backend/app/cron_dashboard.py
2024-10-24 11:56:55 +02:00

404 lines
15 KiB
Python

import aiohttp
import aiofiles
import ujson
import sqlite3
import pandas as pd
import asyncio
import pytz
import os
from dotenv import load_dotenv
from datetime import datetime, timedelta, date
import sqlite3
headers = {"accept": "application/json"}
def check_market_hours():
holidays = [
"2024-01-01", "2024-01-15", "2024-02-19", "2024-03-29",
"2024-05-27", "2024-06-19", "2024-07-04", "2024-09-02",
"2024-11-28", "2024-12-25"
]
# Get the current date and time in ET (Eastern Time)
et_timezone = pytz.timezone('America/New_York')
current_time = datetime.now(et_timezone)
current_date_str = current_time.strftime('%Y-%m-%d')
current_hour = current_time.hour
current_minute = current_time.minute
current_day = current_time.weekday() # Monday is 0, Sunday is 6
# Check if the current date is a holiday or weekend
is_weekend = current_day >= 5 # Saturday (5) or Sunday (6)
is_holiday = current_date_str in holidays
# Determine the market status
if is_weekend or is_holiday:
return 0 #Closed
elif current_hour < 9 or (current_hour == 9 and current_minute < 30):
return 1 # Pre-Market
elif 9 <= current_hour < 16 or (current_hour == 16 and current_minute == 0):
return 0 #"Market hours."
elif 16 <= current_hour < 24:
return 2 #"After-market hours."
else:
return 0 #"Market is closed."
load_dotenv()
benzinga_api_key = os.getenv('BENZINGA_API_KEY')
fmp_api_key = os.getenv('FMP_API_KEY')
query_template = """
SELECT
marketCap
FROM
stocks
WHERE
symbol = ?
"""
async def save_json(data):
with open(f"json/dashboard/data.json", 'w') as file:
ujson.dump(data, file)
def get_sector_path(sector):
sector_paths = {
'Financials': "/list/financial-sector",
'Healthcare': "/list/healthcare-sector",
'Information Technology': "/list/technology-sector",
'Technology': "/list/technology-sector",
'Financial Services': "/list/financial-sector",
'Industrials': "/list/industrials-sector",
'Energy': "/list/energy-sector",
'Utilities': "/list/utilities-sector",
'Consumer Cyclical': "/list/consumer-cyclical-sector",
'Real Estate': "/list/real-estate-sector",
'Basic Materials': "/list/basic-materials-sector",
'Communication Services': "/list/communication-services-sector",
'Consumer Defensive': "/list/consumer-defensive-sector"
}
# Return the path if the sector exists in the dictionary, otherwise return None or a default path
return sector_paths.get(sector, None)
def parse_time(time_str):
try:
# Try parsing as full datetime
return datetime.strptime(time_str, '%Y-%m-%d %H:%M:%S')
except ValueError:
try:
# Try parsing as time only
time_obj = datetime.strptime(time_str, '%H:%M:%S').time()
# Combine with today's date
return datetime.combine(date.today(), time_obj)
except ValueError:
# If all else fails, return a default datetime
return datetime.min
def remove_duplicates(elements):
seen = set()
unique_elements = []
for element in elements:
if element['symbol'] not in seen:
seen.add(element['symbol'])
unique_elements.append(element)
return unique_elements
def weekday():
today = datetime.today()
if today.weekday() >= 5: # 5 = Saturday, 6 = Sunday
yesterday = today - timedelta(2)
else:
yesterday = today - timedelta(1)
return yesterday.strftime('%Y-%m-%d')
today = datetime.today().strftime('%Y-%m-%d')
tomorrow = (datetime.today() + timedelta(1))
yesterday = weekday()
if tomorrow.weekday() >= 5: # 5 = Saturday, 6 = Sunday
tomorrow = tomorrow + timedelta(days=(7 - tomorrow.weekday()))
tomorrow = tomorrow.strftime('%Y-%m-%d')
async def get_upcoming_earnings(session, end_date):
url = "https://api.benzinga.com/api/v2.1/calendar/earnings"
importance_list = ["1","2","3","4","5"]
res_list = []
for importance in importance_list:
querystring = {"token": benzinga_api_key,"parameters[importance]":importance,"parameters[date_from]":today,"parameters[date_to]":end_date,"parameters[date_sort]":"date"}
try:
async with session.get(url, params=querystring, headers=headers) as response:
res = ujson.loads(await response.text())['earnings']
res = [e for e in res if datetime.strptime(e['date'], "%Y-%m-%d").date() != date.today() or datetime.strptime(e['time'], "%H:%M:%S").time() >= datetime.strptime("16:00:00", "%H:%M:%S").time()]
for item in res:
try:
symbol = item['ticker']
name = item['name']
time = item['time']
is_today = True if item['date'] == datetime.today().strftime('%Y-%m-%d') else False
eps_prior = float(item['eps_prior']) if item['eps_prior'] != '' else 0
eps_est = float(item['eps_est']) if item['eps_est'] != '' else 0
revenue_est = float(item['revenue_est']) if item['revenue_est'] != '' else 0
revenue_prior = float(item['revenue_prior']) if item['revenue_prior'] != '' else 0
if symbol in stock_symbols and revenue_est != 0 and revenue_prior != 0 and eps_prior != 0 and eps_est != 0:
df = pd.read_sql_query(query_template, con, params=(symbol,))
market_cap = float(df['marketCap'].iloc[0]) if df['marketCap'].iloc[0] != '' else 0
res_list.append({
'symbol': symbol,
'name': name,
'time': time,
'isToday': is_today,
'marketCap': market_cap,
'epsPrior':eps_prior,
'epsEst': eps_est,
'revenuePrior': revenue_prior,
'revenueEst': revenue_est
})
except Exception as e:
print('Upcoming Earnings:', e)
pass
res_list = remove_duplicates(res_list)
res_list.sort(key=lambda x: x['marketCap'], reverse=True)
res_list = [{k: v for k, v in d.items() if k != 'marketCap'} for d in res_list]
except Exception as e:
print(e)
pass
return res_list[:10]
async def get_recent_earnings(session):
url = "https://api.benzinga.com/api/v2.1/calendar/earnings"
res_list = []
importance_list = ["1","2","3","4","5"]
res_list = []
for importance in importance_list:
querystring = {"token": benzinga_api_key,"parameters[importance]":importance, "parameters[date_from]":yesterday,"parameters[date_to]":today,"parameters[date_sort]":"date"}
try:
async with session.get(url, params=querystring, headers=headers) as response:
res = ujson.loads(await response.text())['earnings']
for item in res:
try:
symbol = item['ticker']
name = item['name']
time = item['time']
eps_prior = float(item['eps_prior']) if item['eps_prior'] != '' else 0
eps_surprise = float(item['eps_surprise']) if item['eps_surprise'] != '' else 0
eps = float(item['eps']) if item['eps'] != '' else 0
revenue_prior = float(item['revenue_prior']) if item['revenue_prior'] != '' else 0
revenue_surprise = float(item['revenue_surprise']) if item['revenue_surprise'] != '' else 0
revenue = float(item['revenue']) if item['revenue'] != '' else 0
if symbol in stock_symbols and revenue != 0 and revenue_prior != 0 and eps_prior != 0 and eps != 0 and revenue_surprise != 0 and eps_surprise != 0:
df = pd.read_sql_query(query_template, con, params=(symbol,))
market_cap = float(df['marketCap'].iloc[0]) if df['marketCap'].iloc[0] != '' else 0
res_list.append({
'symbol': symbol,
'name': name,
'time': time,
'marketCap': market_cap,
'epsPrior':eps_prior,
'epsSurprise': eps_surprise,
'eps': eps,
'revenuePrior': revenue_prior,
'revenueSurprise': revenue_surprise,
'revenue': revenue
})
except Exception as e:
print('Recent Earnings:', e)
pass
except Exception as e:
pass
res_list = remove_duplicates(res_list)
res_list.sort(key=lambda x: x['marketCap'], reverse=True)
#res_list.sort(key=lambda x: (-parse_time(x['time']).timestamp(), -x['marketCap']))
res_list = [{k: v for k, v in d.items() if k != 'marketCap'} for d in res_list]
return res_list[0:10]
async def get_recent_dividends(session):
url = "https://api.benzinga.com/api/v2.1/calendar/dividends"
importance_list = ["1","2","3","4","5"]
res_list = []
for importance in importance_list:
querystring = {"token": benzinga_api_key,"parameters[importance]":importance,"parameters[date_from]":yesterday,"parameters[date_to]":today}
try:
async with session.get(url, params=querystring, headers=headers) as response:
res = ujson.loads(await response.text())['dividends']
for item in res:
try:
symbol = item['ticker']
name = item['name']
dividend = float(item['dividend']) if item['dividend'] != '' else 0
dividend_prior = float(item['dividend_prior']) if item['dividend_prior'] != '' else 0
dividend_yield = round(float(item['dividend_yield'])*100,2) if item['dividend_yield'] != '' else 0
ex_dividend_date = item['ex_dividend_date'] if item['ex_dividend_date'] != '' else 0
payable_date = item['payable_date'] if item['payable_date'] != '' else 0
record_date = item['record_date'] if item['record_date'] != '' else 0
if symbol in stock_symbols and dividend != 0 and payable_date != 0 and dividend_prior != 0 and ex_dividend_date != 0 and record_date != 0 and dividend_yield != 0:
df = pd.read_sql_query(query_template, con, params=(symbol,))
market_cap = float(df['marketCap'].iloc[0]) if df['marketCap'].iloc[0] != '' else 0
res_list.append({
'symbol': symbol,
'name': name,
'dividend': dividend,
'marketCap': market_cap,
'dividendPrior':dividend_prior,
'dividendYield': dividend_yield,
'exDividendDate': ex_dividend_date,
'payableDate': payable_date,
'recordDate': record_date,
'updated': item['updated']
})
except Exception as e:
print('Recent Dividends:', e)
pass
except Exception as e:
print(e)
pass
res_list = remove_duplicates(res_list)
res_list.sort(key=lambda x: x['marketCap'], reverse=True)
res_list = [{k: v for k, v in d.items() if k != 'marketCap'} for d in res_list]
return res_list[0:5]
async def get_top_sector(session):
url = f"https://financialmodelingprep.com/api/v3/sectors-performance?apikey={fmp_api_key}"
try:
async with session.get(url) as response:
if response.status == 200:
sectors = await response.json()
sectors = [{'sector': item['sector'], 'changesPercentage': round(float(item['changesPercentage'].strip('%')), 2)} for item in sectors]
res = max(sectors, key=lambda x: x['changesPercentage'])
res['link'] = get_sector_path(res['sector'])
return res
else:
print(f"Failed to retrieve data: {response.status}")
return None
except Exception as e:
print(f"An error occurred: {e}")
return None
async def get_latest_bezinga_market_news(session):
url = "https://api.benzinga.com/api/v2/news"
querystring = {"token": benzinga_api_key,"channels":"News","pageSize":"10","displayOutput":"full"}
try:
async with session.get(url, params=querystring, headers=headers) as response:
res_list = []
res = ujson.loads(await response.text())
for item in res:
res_list.append({'date': item['created'], 'text': item['title'], 'url': item['url']})
res_list.sort(key=lambda x: datetime.strptime(x['date'], '%a, %d %b %Y %H:%M:%S %z'), reverse=True)
return res_list
except Exception as e:
#pass
print(e)
async def run():
async with aiohttp.ClientSession() as session:
benzinga_news = await get_latest_bezinga_market_news(session)
recent_earnings = await get_recent_earnings(session)
upcoming_earnings = await get_upcoming_earnings(session, today)
if len(upcoming_earnings) < 5:
upcoming_earnings = await get_upcoming_earnings(session, tomorrow)
top_sector = await get_top_sector(session)
recent_dividends = await get_recent_dividends(session)
#Avoid clashing of recent and upcoming earnings
upcoming_earnings = [item for item in upcoming_earnings if item['symbol'] not in [earning['symbol'] for earning in recent_earnings]]
try:
with open(f"json/retail-volume/data.json", 'r') as file:
retail_tracker = ujson.load(file)[0:5]
except:
retail_tracker = []
try:
with open(f"json/options-flow/feed/data.json", 'r') as file:
options_flow = ujson.load(file)
# Filter the options_flow to include only items with ticker in total_symbol
options_flow = [item for item in options_flow if item['ticker'] in stock_symbols]
highest_volume = sorted(options_flow, key=lambda x: int(x['volume']), reverse=True)
highest_volume = [{key: item[key] for key in ['cost_basis', 'ticker','underlying_type', 'date_expiration', 'put_call', 'volume', 'strike_price']} for item in highest_volume[0:4]]
highest_premium = sorted(options_flow, key=lambda x: int(x['cost_basis']), reverse=True)
highest_premium = [{key: item[key] for key in ['cost_basis', 'ticker','underlying_type', 'date_expiration', 'put_call', 'volume', 'strike_price']} for item in highest_premium[0:4]]
highest_open_interest = sorted(options_flow, key=lambda x: int(x['open_interest']), reverse=True)
highest_open_interest = [{key: item[key] for key in ['cost_basis', 'ticker','underlying_type', 'date_expiration', 'put_call', 'open_interest', 'strike_price']} for item in highest_open_interest[0:4]]
options_flow = {'premium': highest_premium, 'volume': highest_volume, 'openInterest':highest_open_interest}
except Exception as e:
print(e)
options_flow = {}
market_status = check_market_hours()
print(market_status)
if market_status == 0:
try:
with open(f"json/market-movers/data.json", 'r') as file:
data = ujson.load(file)
market_movers = {'gainers': data['gainers']['1D'][:5], 'losers': data['losers']['1D'][:5]}
except:
market_movers = {}
else:
try:
with open(f"json/market-movers/pre-post-data.json", 'r') as file:
market_movers = ujson.load(file)
except:
market_movers = {}
data = {
'marketMovers': market_movers,
'marketStatus': market_status,
'optionsFlow': options_flow,
'marketNews': benzinga_news,
'recentEarnings': recent_earnings,
'upcomingEarnings': upcoming_earnings,
'recentDividends': recent_dividends,
}
if len(data) > 0:
await save_json(data)
try:
con = sqlite3.connect('stocks.db')
etf_con = sqlite3.connect('etf.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks")
stock_symbols = [row[0] for row in cursor.fetchall()]
etf_cursor = etf_con.cursor()
etf_cursor.execute("PRAGMA journal_mode = wal")
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
total_symbols = stock_symbols+etf_symbols
asyncio.run(run())
con.close()
etf_con.close()
except Exception as e:
print(e)