377 lines
14 KiB
Python
377 lines
14 KiB
Python
import praw
|
|
import orjson
|
|
from datetime import datetime
|
|
import os
|
|
from dotenv import load_dotenv
|
|
import time
|
|
import ujson
|
|
import argparse
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Market Status')
|
|
parser.add_argument('--market_status', choices=[0, 1, 2], type=int, default=0,
|
|
help='Market status: 0 for Open (default), 1 for Premarket, 2 for Afterhours')
|
|
return parser.parse_args()
|
|
|
|
|
|
def format_time(time_str):
|
|
"""Format time string to AM/PM format"""
|
|
if not time_str:
|
|
return ""
|
|
|
|
try:
|
|
time_parts = time_str.split(':')
|
|
hours = int(time_parts[0])
|
|
minutes = int(time_parts[1])
|
|
|
|
period = "AM" if hours < 12 else "PM"
|
|
if hours > 12:
|
|
hours -= 12
|
|
elif hours == 0:
|
|
hours = 12
|
|
|
|
return f"{hours:02d}:{minutes:02d} {period}"
|
|
except:
|
|
return ""
|
|
|
|
|
|
def format_number(num):
|
|
"""Abbreviate large numbers with B/M suffix"""
|
|
if num >= 1_000_000_000:
|
|
return f"${num / 1_000_000_000:.2f}B"
|
|
elif num >= 1_000_000:
|
|
return f"${num / 1_000_000:.2f}M"
|
|
return f"${num:,.0f}"
|
|
|
|
def calculate_yoy_change(current, prior):
|
|
"""Calculate year-over-year percentage change"""
|
|
if prior and prior != 0:
|
|
return ((current / prior - 1) * 100)
|
|
return 0
|
|
|
|
def get_market_timing(time_str):
|
|
"""Determine if earnings are before, after, or during market hours"""
|
|
if not time_str:
|
|
return ""
|
|
|
|
try:
|
|
time_parts = time_str.split(':')
|
|
hours = int(time_parts[0])
|
|
minutes = int(time_parts[1])
|
|
|
|
if hours < 9 or (hours == 9 and minutes <= 30):
|
|
return "before market opens."
|
|
elif hours >= 16:
|
|
return "after market closes."
|
|
else:
|
|
return "during market."
|
|
except:
|
|
return ""
|
|
|
|
def format_upcoming_earnings_data(earnings_data):
|
|
"""Format earnings data into Reddit-friendly markdown with hyperlinks."""
|
|
formatted_items = []
|
|
|
|
for item in earnings_data:
|
|
symbol = item.get('symbol', None)
|
|
if symbol is not None:
|
|
name = item.get('name', 'Unknown')
|
|
market_timing = get_market_timing(item.get('time'))
|
|
revenue_formatted = format_number(item.get('revenueEst', 0))
|
|
revenue_yoy = calculate_yoy_change(item.get('revenueEst', 0), item.get('revenuePrior', 1)) # Avoid division by zero
|
|
eps_yoy = calculate_yoy_change(item.get('epsEst', 0), item.get('epsPrior', 1)) # Avoid division by zero
|
|
|
|
# Determine reporting time text
|
|
if item.get('isToday'):
|
|
report_timing = "will report today"
|
|
else:
|
|
current_day = datetime.now().strftime('%A')
|
|
report_timing = "will report tomorrow" if current_day in ['Monday', 'Tuesday', 'Wednesday', 'Thursday'] else "will report Monday"
|
|
|
|
# Create hyperlink for symbol
|
|
symbol_link = f"[{symbol}](https://stocknear.com/stocks/{symbol})"
|
|
|
|
# Format the entry text
|
|
entry = (
|
|
f"* **{name}** ({symbol_link}) {report_timing} {market_timing} "
|
|
f"Analysts estimate {revenue_formatted} in revenue ({revenue_yoy:.2f}% YoY) and "
|
|
f"${item.get('epsEst', 0):.2f} in earnings per share ({eps_yoy:.2f}% YoY).\n\n"
|
|
)
|
|
formatted_items.append(entry)
|
|
|
|
return "".join(formatted_items)
|
|
|
|
def format_recent_earnings_data(earnings_data):
|
|
"""Format earnings data into Reddit-friendly markdown with bullet points."""
|
|
formatted_items = []
|
|
|
|
for item in earnings_data:
|
|
symbol = item.get('symbol', None)
|
|
if symbol is not None:
|
|
name = item.get('name', 'Unknown')
|
|
time = format_time(item.get('time', ''))
|
|
|
|
# Financial calculations
|
|
revenue = item.get('revenue', 0) # Changed from revenueEst to revenue for actual results
|
|
revenue_prior = item.get('revenuePrior', 1)
|
|
revenue_surprise = item.get('revenueSurprise', 0)
|
|
eps = item.get('eps', 0) # Changed from epsEst to eps for actual results
|
|
eps_prior = item.get('epsPrior', 1)
|
|
eps_surprise = item.get('epsSurprise', 0)
|
|
|
|
# Calculate YoY changes
|
|
revenue_yoy = calculate_yoy_change(revenue, revenue_prior)
|
|
eps_yoy = calculate_yoy_change(eps, eps_prior)
|
|
|
|
# Format numbers
|
|
revenue_formatted = format_number(revenue)
|
|
revenue_surprise_formatted = format_number(abs(revenue_surprise))
|
|
|
|
# Determine growth/decline text
|
|
revenue_trend = "growth" if revenue_yoy >= 0 else "decline"
|
|
eps_trend = "growth" if eps_yoy >= 0 else "decline"
|
|
|
|
# Create hyperlink for symbol
|
|
symbol_link = f"[{symbol}](https://stocknear.com/stocks/{symbol})"
|
|
|
|
# Format the entry text with nested bullet points
|
|
entry = (
|
|
f"**{name}** ({symbol_link}) has released its quarterly earnings at {time}:\n\n"
|
|
f"* Revenue of {revenue_formatted} "
|
|
f"{'exceeds' if revenue_surprise > 0 else 'misses'} estimates by {revenue_surprise_formatted}, "
|
|
f"with {revenue_yoy:.2f}% YoY {revenue_trend}.\n\n"
|
|
f"* EPS of ${eps:.2f} "
|
|
f"{'exceeds' if eps_surprise > 0 else 'misses'} estimates by ${abs(eps_surprise):.2f}, "
|
|
f"with {eps_yoy:.2f}% YoY {eps_trend}.\n\n"
|
|
)
|
|
|
|
formatted_items.append(entry)
|
|
|
|
return "".join(formatted_items)
|
|
|
|
def format_afterhour_market():
|
|
try:
|
|
# Load gainers data
|
|
with open("json/market-movers/afterhours/gainers.json", 'r') as file:
|
|
data = ujson.load(file)
|
|
gainers = [
|
|
{'symbol': item['symbol'], 'name': item['name'], 'price': item['price'],
|
|
'changesPercentage': item['changesPercentage'], 'marketCap': item['marketCap']}
|
|
for item in data[:5]
|
|
]
|
|
|
|
# Load losers data
|
|
with open("json/market-movers/afterhours/losers.json", 'r') as file:
|
|
data = ujson.load(file)
|
|
losers = [
|
|
{'symbol': item['symbol'], 'name': item['name'], 'price': item['price'],
|
|
'changesPercentage': item['changesPercentage'], 'marketCap': item['marketCap']}
|
|
for item in data[:5]
|
|
]
|
|
|
|
market_movers = {'gainers': gainers, 'losers': losers}
|
|
|
|
except Exception as e:
|
|
print(f"Error loading market data: {e}")
|
|
market_movers = {'gainers': [], 'losers': []}
|
|
|
|
# Create Gainers Table
|
|
gainers_table = "| Symbol | Name | Price | Change (%) | Market Cap |\n"
|
|
gainers_table += "|:------:|:-----|------:|-----------:|-----------:|\n"
|
|
for gainer in market_movers["gainers"]:
|
|
gainers_table += (
|
|
f"| [{gainer['symbol']}](https://stocknear.com/stocks/{gainer['symbol']}) | {gainer['name'][:30]} | "
|
|
f"{gainer['price']:.2f} | +{gainer['changesPercentage']:.2f}% | "
|
|
f"{format_number(gainer['marketCap'])} |\n"
|
|
)
|
|
|
|
# Create Losers Table
|
|
losers_table = "| Symbol | Name | Price | Change (%) | Market Cap |\n"
|
|
losers_table += "|:------:|:-----|------:|-----------:|-----------:|\n"
|
|
for loser in market_movers["losers"]:
|
|
losers_table += (
|
|
f"| [{loser['symbol']}](https://stocknear.com/stocks/{loser['symbol']}) | {loser['name'][:30]} | "
|
|
f"{loser['price']:.2f} | {loser['changesPercentage']:.2f}% | "
|
|
f"{format_number(loser['marketCap'])} |\n"
|
|
)
|
|
# Construct final markdown text
|
|
return f"""
|
|
|
|
Here's a summary of today's After-Hours Gainers and Losers, showcasing stocks that stood out after the market closed.
|
|
|
|
### 📈 After-Hours Gainers
|
|
|
|
{gainers_table}
|
|
|
|
### 📉 After-Hours Losers
|
|
|
|
{losers_table}
|
|
|
|
More info can be found here: [After-Hours Gainers and Losers](https://stocknear.com/market-mover/afterhours/gainers)
|
|
"""
|
|
|
|
def format_premarket_market():
|
|
try:
|
|
# Load gainers data
|
|
with open("json/market-movers/premarket/gainers.json", 'r') as file:
|
|
data = ujson.load(file)
|
|
gainers = [
|
|
{'symbol': item['symbol'], 'name': item['name'], 'price': item['price'],
|
|
'changesPercentage': item['changesPercentage'], 'marketCap': item['marketCap']}
|
|
for item in data[:5]
|
|
]
|
|
|
|
# Load losers data
|
|
with open("json/market-movers/premarket/losers.json", 'r') as file:
|
|
data = ujson.load(file)
|
|
losers = [
|
|
{'symbol': item['symbol'], 'name': item['name'], 'price': item['price'],
|
|
'changesPercentage': item['changesPercentage'], 'marketCap': item['marketCap']}
|
|
for item in data[:5]
|
|
]
|
|
|
|
market_movers = {'gainers': gainers, 'losers': losers}
|
|
|
|
except Exception as e:
|
|
print(f"Error loading market data: {e}")
|
|
market_movers = {'gainers': [], 'losers': []}
|
|
|
|
# Create Gainers Table
|
|
gainers_table = "| Symbol | Name | Price | Change (%) | Market Cap |\n"
|
|
gainers_table += "|:------:|:-----|------:|-----------:|-----------:|\n"
|
|
for gainer in market_movers["gainers"]:
|
|
gainers_table += (
|
|
f"| [{gainer['symbol']}](https://stocknear.com/stocks/{gainer['symbol']}) | {gainer['name'][:30]} | "
|
|
f"{gainer['price']:.2f} | +{gainer['changesPercentage']:.2f}% | "
|
|
f"{format_number(gainer['marketCap'])} |\n"
|
|
)
|
|
|
|
# Create Losers Table
|
|
losers_table = "| Symbol | Name | Price | Change (%) | Market Cap |\n"
|
|
losers_table += "|:------:|:-----|------:|-----------:|-----------:|\n"
|
|
for loser in market_movers["losers"]:
|
|
losers_table += (
|
|
f"| [{loser['symbol']}](https://stocknear.com/stocks/{loser['symbol']}) | {loser['name'][:30]} | "
|
|
f"{loser['price']:.2f} | {loser['changesPercentage']:.2f}% | "
|
|
f"{format_number(loser['marketCap'])} |\n"
|
|
)
|
|
# Construct final markdown text
|
|
return f"""
|
|
|
|
Here's a summary of today's Premarket Gainers and Losers, showcasing stocks that stood out before the market opened.
|
|
|
|
### 📈 Premarket Gainers
|
|
|
|
{gainers_table}
|
|
|
|
### 📉 Premarket Losers
|
|
|
|
{losers_table}
|
|
|
|
More info can be found here: [Premarket Gainers and Losers](https://stocknear.com/market-mover/premarket/gainers)
|
|
"""
|
|
|
|
|
|
|
|
|
|
def post_to_reddit():
|
|
# Load environment variables
|
|
load_dotenv()
|
|
args = parse_args()
|
|
market_status = args.market_status
|
|
|
|
|
|
# Initialize Reddit instance
|
|
reddit = praw.Reddit(
|
|
client_id=os.getenv('REDDIT_BOT_API_KEY'),
|
|
client_secret=os.getenv('REDDIT_BOT_API_SECRET'),
|
|
username=os.getenv('REDDIT_USERNAME'),
|
|
password=os.getenv('REDDIT_PASSWORD'),
|
|
user_agent=os.getenv('REDDIT_USER_AGENT', 'script:my_bot:v1.0 (by /u/username)')
|
|
)
|
|
|
|
# Define the subreddit
|
|
subreddit = reddit.subreddit("stocknear")
|
|
|
|
flair_choices = subreddit.flair.link_templates # Get submission flair templates
|
|
|
|
# Print all submission flairs
|
|
'''
|
|
print("Submission Flairs:")
|
|
for flair in flair_choices:
|
|
print(f"ID: {flair['id']} | Text: {flair['text']} | CSS Class: {flair['css_class']} | Mod Only: {flair['mod_only']}")
|
|
'''
|
|
|
|
|
|
# Get current date with formatting
|
|
today = datetime.now()
|
|
month_str = today.strftime("%b")
|
|
day = today.day
|
|
year = today.year
|
|
day_suffix = "th" if 11 <= day <= 13 else {1: "st", 2: "nd", 3: "rd"}.get(day % 10, "th")
|
|
formatted_date = f"{month_str} {day}{day_suffix} {year}"
|
|
|
|
# Load and parse data from JSON file
|
|
with open("json/dashboard/data.json", "rb") as file:
|
|
data = orjson.loads(file.read())
|
|
|
|
# Define the post configurations
|
|
post_configs = [
|
|
{
|
|
"data_key": "upcomingEarnings",
|
|
"format_func": format_upcoming_earnings_data,
|
|
"title": f"Upcoming Earnings for {formatted_date}",
|
|
"flair_id": "b9f76638-772e-11ef-96c1-0afbf26bd890"
|
|
},
|
|
{
|
|
"data_key": "recentEarnings",
|
|
"format_func": format_recent_earnings_data,
|
|
"title": f"Recent Earnings for {formatted_date}",
|
|
"flair_id": "b9f76638-772e-11ef-96c1-0afbf26bd890"
|
|
},
|
|
]
|
|
|
|
if market_status == 0:
|
|
try:
|
|
# Loop through post configurations to submit each post
|
|
for config in post_configs:
|
|
formatted_text = config["format_func"](data.get(config["data_key"], []))
|
|
title = config["title"]
|
|
flair_id = config["flair_id"]
|
|
|
|
# Submit the post
|
|
post = subreddit.submit(
|
|
title=title,
|
|
selftext=formatted_text,
|
|
flair_id=flair_id
|
|
)
|
|
print(f"Post created successfully: {post.url}")
|
|
|
|
except praw.exceptions.PRAWException as e:
|
|
print(f"Error posting to Reddit: {str(e)}")
|
|
except Exception as e:
|
|
print(f"Unexpected error: {str(e)}")
|
|
|
|
elif market_status == 1: #premarket
|
|
try:
|
|
formatted_content = format_premarket_market()
|
|
title = "Premarket Gainers and Losers for Today 🚀📉"
|
|
post = subreddit.submit(title, selftext=formatted_content, flair_id="b348676c-e451-11ee-8572-328509439585")
|
|
print(f"Post created successfully")
|
|
except Exception as e:
|
|
print(f"Error posting to Reddit: {str(e)}")
|
|
|
|
elif market_status == 2: #aftermarket
|
|
try:
|
|
formatted_content = format_afterhour_market()
|
|
title = "Afterhours Gainers and Losers for Today 🚀📉"
|
|
post = subreddit.submit(title, selftext=formatted_content, flair_id="b348676c-e451-11ee-8572-328509439585")
|
|
print(f"Post created successfully")
|
|
except Exception as e:
|
|
print(f"Error posting to Reddit: {str(e)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
post_to_reddit()
|