backend/app/cron_options_bubble.py
2024-05-26 22:28:08 +02:00

140 lines
5.5 KiB
Python
Executable File

import sqlite3
from datetime import datetime, timedelta, date
import ujson
import asyncio
import os
from dotenv import load_dotenv
from benzinga import financial_data
import time
load_dotenv()
api_key = os.getenv('BENZINGA_API_KEY')
fin = financial_data.Benzinga(api_key)
def calculate_dte(date_expiration):
expiration_date = datetime.strptime(date_expiration, "%Y-%m-%d")
return (expiration_date - datetime.today()).days
def calculate_avg_dte(data):
active_options = [entry for entry in data if calculate_dte(entry['date_expiration']) >= 0]
if active_options:
total_dte = sum(entry['dte'] for entry in active_options)
return int(total_dte / len(active_options))
else:
return 0
def calculate_put_call_volumes(data):
put_volume = sum(int(entry['volume']) for entry in data if entry['put_call'] == 'PUT')
call_volume = sum(int(entry['volume']) for entry in data if entry['put_call'] == 'CALL')
return put_volume, call_volume
def options_bubble_data(chunk):
try:
company_tickers = ','.join(chunk)
end_date = date.today()
start_date = end_date - timedelta(90)
end_date_str = end_date.strftime('%Y-%m-%d')
start_date_str = start_date.strftime('%Y-%m-%d')
res_list = []
for page in range(0, 100):
try:
data = fin.options_activity(company_tickers=company_tickers, page=page, pagesize=500, date_from=start_date_str, date_to=end_date_str)
data = ujson.loads(fin.output(data))['option_activity']
res_list += data
except:
break
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','date', 'date_expiration', 'put_call', 'volume', 'open_interest']} for item in res_list]
for option_type in ['CALL', 'PUT']:
for item in res_filtered:
if item['put_call'].upper() == option_type:
item['dte'] = calculate_dte(item['date_expiration'])
if item['ticker'] in ['BRK.A', 'BRK.B']:
item['ticker'] = f"BRK-{item['ticker'][-1]}"
#Save raw data for each ticker for options page stack bar chart
for ticker in chunk:
ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == ticker]
if len(ticker_filtered_data) != 0:
#sum up calls and puts for each day for the plot
summed_data = {}
for entry in ticker_filtered_data:
volume = int(entry['volume'])
open_interest = int(entry['open_interest'])
put_call = entry['put_call']
if entry['date'] not in summed_data:
summed_data[entry['date']] = {'CALL': {'volume': 0, 'open_interest': 0}, 'PUT': {'volume': 0, 'open_interest': 0}}
summed_data[entry['date']][put_call]['volume'] += volume
summed_data[entry['date']][put_call]['open_interest'] += open_interest
result_list = [{'date': date, 'CALL': summed_data[date]['CALL'], 'PUT': summed_data[date]['PUT']} for date in summed_data]
#reverse the list
result_list = result_list[::-1]
with open(f"json/options-flow/company/{ticker}.json", 'w') as file:
ujson.dump(result_list, file)
#Save bubble data for each ticker for overview page
for ticker in chunk:
bubble_data = {}
for time_period, days in {'oneDay': 1, 'oneWeek': 7, 'oneMonth': 30, 'threeMonth': 90}.items():
start_date = end_date - timedelta(days=days) #end_date is today
filtered_data = [item for item in res_filtered if start_date <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
ticker_filtered_data = [entry for entry in filtered_data if entry['ticker'] == ticker]
put_volume, call_volume = calculate_put_call_volumes(ticker_filtered_data)
avg_dte = calculate_avg_dte(ticker_filtered_data)
bubble_data[time_period] = {'putVolume': put_volume, 'callVolume': call_volume, 'avgDTE': avg_dte}
if all(all(value == 0 for value in data.values()) for data in bubble_data.values()):
bubble_data = {}
#don't save the json
else:
with open(f"json/options-bubble/{ticker}.json", 'w') as file:
ujson.dump(bubble_data, file)
except ValueError as ve:
print(ve)
except Exception as e:
print(e)
try:
stock_con = sqlite3.connect('stocks.db')
stock_cursor = stock_con.cursor()
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks")
stock_symbols = [row[0] for row in stock_cursor.fetchall()]
etf_con = sqlite3.connect('etf.db')
etf_cursor = etf_con.cursor()
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
stock_con.close()
etf_con.close()
total_symbols = stock_symbols + etf_symbols
total_symbols = [item.replace("BRK-B", "BRK.B") for item in total_symbols]
chunk_size = len(total_symbols) // 20 # Divide the list into N chunks
chunks = [total_symbols[i:i + chunk_size] for i in range(0, len(total_symbols), chunk_size)]
for chunk in chunks:
options_bubble_data(chunk)
except Exception as e:
print(e)