244 lines
11 KiB
Python
Executable File
244 lines
11 KiB
Python
Executable File
import orjson
|
|
import asyncio
|
|
import aiohttp
|
|
import aiofiles
|
|
import sqlite3
|
|
from datetime import datetime
|
|
from ml_models.fundamental_predictor import FundamentalPredictor
|
|
import yfinance as yf
|
|
from collections import defaultdict
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
import concurrent.futures
|
|
import re
|
|
import subprocess
|
|
|
|
|
|
async def save_json(symbol, data):
|
|
with open(f"json/fundamental-predictor-analysis/{symbol}.json", 'w') as file:
|
|
file.write(orjson.dumps(data))
|
|
|
|
|
|
async def download_data(ticker, con, start_date, end_date):
|
|
try:
|
|
# Define paths to the statement files
|
|
statements = [
|
|
f"json/financial-statements/ratios/quarter/{ticker}.json",
|
|
f"json/financial-statements/cash-flow-statement/quarter/{ticker}.json",
|
|
f"json/financial-statements/income-statement/quarter/{ticker}.json",
|
|
f"json/financial-statements/balance-sheet-statement/quarter/{ticker}.json",
|
|
f"json/financial-statements/income-statement-growth/quarter/{ticker}.json",
|
|
f"json/financial-statements/balance-sheet-statement-growth/quarter/{ticker}.json",
|
|
f"json/financial-statements/cash-flow-statement-growth/quarter/{ticker}.json"
|
|
]
|
|
|
|
# Helper function to load JSON data asynchronously
|
|
async def load_json_from_file(path):
|
|
async with aiofiles.open(path, 'r') as f:
|
|
content = await f.read()
|
|
return orjson.loads(content)
|
|
|
|
# Helper function to filter data based on keys and year
|
|
async def filter_data(data, ignore_keys, year_threshold=2000):
|
|
return [{k: v for k, v in item.items() if k not in ignore_keys} for item in data if int(item["date"][:4]) >= year_threshold]
|
|
|
|
# Define keys to ignore
|
|
ignore_keys = ["symbol", "reportedCurrency", "calendarYear", "fillingDate", "acceptedDate", "period", "cik", "link", "finalLink"]
|
|
|
|
# Load and filter data for each statement type
|
|
income = await load_json_from_file(statements[2])
|
|
income = await filter_data(income, ignore_keys)
|
|
|
|
income_growth = await load_json_from_file(statements[4])
|
|
income_growth = await filter_data(income_growth, ignore_keys)
|
|
|
|
balance = await load_json_from_file(statements[3])
|
|
balance = await filter_data(balance, ignore_keys)
|
|
|
|
balance_growth = await load_json_from_file(statements[5])
|
|
balance_growth = await filter_data(balance_growth, ignore_keys)
|
|
|
|
cashflow = await load_json_from_file(statements[1])
|
|
cashflow = await filter_data(cashflow, ignore_keys)
|
|
|
|
cashflow_growth = await load_json_from_file(statements[6])
|
|
cashflow_growth = await filter_data(cashflow_growth, ignore_keys)
|
|
|
|
ratios = await load_json_from_file(statements[0])
|
|
ratios = await filter_data(ratios, ignore_keys)
|
|
|
|
# Combine all the data
|
|
combined_data = defaultdict(dict)
|
|
|
|
# Merge the data based on 'date'
|
|
for entries in zip(income, income_growth, balance, balance_growth, cashflow, cashflow_growth, ratios):
|
|
for entry in entries:
|
|
date = entry['date']
|
|
for key, value in entry.items():
|
|
if key not in combined_data[date]:
|
|
combined_data[date][key] = value
|
|
|
|
combined_data = list(combined_data.values())
|
|
|
|
# Download historical stock data using yfinance
|
|
df = yf.download(ticker, start=start_date, end=end_date, interval="1d").reset_index()
|
|
df = df.rename(columns={'Adj Close': 'close', 'Date': 'date'})
|
|
df['date'] = df['date'].dt.strftime('%Y-%m-%d')
|
|
|
|
# Match each combined data entry with the closest available stock price in df
|
|
for item in combined_data:
|
|
target_date = item['date']
|
|
counter = 0
|
|
max_attempts = 10
|
|
|
|
# Look for the closest matching date in the stock data
|
|
while target_date not in df['date'].values and counter < max_attempts:
|
|
target_date = (pd.to_datetime(target_date) - pd.Timedelta(days=1)).strftime('%Y-%m-%d')
|
|
counter += 1
|
|
|
|
# If max attempts are reached and no matching date is found, skip the entry
|
|
if counter == max_attempts:
|
|
continue
|
|
|
|
# Find the close price for the matching date
|
|
close_price = round(df[df['date'] == target_date]['close'].values[0], 2)
|
|
item['price'] = close_price
|
|
|
|
# Sort the combined data by date
|
|
combined_data = sorted(combined_data, key=lambda x: x['date'])
|
|
|
|
# Convert combined data into a DataFrame
|
|
df_combined = pd.DataFrame(combined_data).dropna()
|
|
|
|
# Create 'Target' column based on price change
|
|
df_combined['Target'] = ((df_combined['price'].shift(-1) - df_combined['price']) / df_combined['price'] > 0).astype(int)
|
|
|
|
# Return a copy of the combined DataFrame
|
|
df_copy = df_combined.copy()
|
|
return df_copy
|
|
|
|
except:
|
|
pass
|
|
|
|
|
|
async def process_symbol(ticker, con, start_date, end_date):
|
|
try:
|
|
test_size = 0.4
|
|
start_date = datetime(2000, 1, 1).strftime("%Y-%m-%d")
|
|
end_date = datetime.today().strftime("%Y-%m-%d")
|
|
predictor = FundamentalPredictor()
|
|
df = await download_data(ticker, con, start_date, end_date)
|
|
split_size = int(len(df) * (1-test_size))
|
|
test_data = df.iloc[split_size:]
|
|
selected_features = ['shortTermCoverageRatios','netProfitMargin','debtRepayment','totalDebt','interestIncome','researchAndDevelopmentExpenses','priceEarningsToGrowthRatio','priceCashFlowRatio','cashPerShare','debtRatio','growthRevenue','revenue','growthNetIncome','ebitda','priceEarningsRatio','priceToBookRatio','epsdiluted','priceToSalesRatio','growthOtherCurrentLiabilities', 'receivablesTurnover', 'totalLiabilitiesAndStockholdersEquity', 'totalLiabilitiesAndTotalEquity', 'totalAssets', 'growthOtherCurrentAssets', 'retainedEarnings', 'totalEquity']
|
|
data, prediction_list = predictor.evaluate_model(test_data[selected_features], test_data['Target'])
|
|
|
|
|
|
'''
|
|
output_list = [{'date': date, 'price': price, 'prediction': prediction, 'target': target}
|
|
for (date, price,target), prediction in zip(test_data[['date', 'price','Target']].iloc[-6:].values, prediction_list[-6:])]
|
|
'''
|
|
#print(output_list)
|
|
|
|
if len(data) != 0:
|
|
if data['precision'] >= 50 and data['accuracy'] >= 50:
|
|
await save_json(ticker, data)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
#Train mode
|
|
async def train_process(tickers, con):
|
|
tickers = list(set(tickers))
|
|
df_train = pd.DataFrame()
|
|
df_test = pd.DataFrame()
|
|
test_size = 0.4
|
|
start_date = datetime(2000, 1, 1).strftime("%Y-%m-%d")
|
|
end_date = datetime.today().strftime("%Y-%m-%d")
|
|
predictor = FundamentalPredictor()
|
|
df_train = pd.DataFrame()
|
|
df_test = pd.DataFrame()
|
|
|
|
|
|
tasks = [download_data(ticker, con, start_date, end_date) for ticker in tickers]
|
|
dfs = await asyncio.gather(*tasks)
|
|
for df in dfs:
|
|
try:
|
|
split_size = int(len(df) * (1-test_size))
|
|
train_data = df.iloc[:split_size]
|
|
test_data = df.iloc[split_size:]
|
|
df_train = pd.concat([df_train, train_data], ignore_index=True)
|
|
df_test = pd.concat([df_test, test_data], ignore_index=True)
|
|
except:
|
|
pass
|
|
|
|
|
|
best_features = [col for col in df_train.columns if col not in ['date','price','Target']]
|
|
|
|
df_train = df_train.sample(frac=1).reset_index(drop=True)
|
|
print('======Train Set Datapoints======')
|
|
print(len(df_train))
|
|
#selected_features = predictor.feature_selection(df_train[best_features], df_train['Target'],k=10)
|
|
#print(selected_features)
|
|
#selected_features = [col for col in df_train if col not in ['price','date','Target']]
|
|
selected_features = ['shortTermCoverageRatios','netProfitMargin','debtRepayment','totalDebt','interestIncome','researchAndDevelopmentExpenses','priceEarningsToGrowthRatio','priceCashFlowRatio','cashPerShare','debtRatio','growthRevenue','revenue','growthNetIncome','ebitda','priceEarningsRatio','priceToBookRatio','epsdiluted','priceToSalesRatio','growthOtherCurrentLiabilities', 'receivablesTurnover', 'totalLiabilitiesAndStockholdersEquity', 'totalLiabilitiesAndTotalEquity', 'totalAssets', 'growthOtherCurrentAssets', 'retainedEarnings', 'totalEquity']
|
|
|
|
predictor.train_model(df_train[selected_features], df_train['Target'])
|
|
predictor.evaluate_model(df_test[selected_features], df_test['Target'])
|
|
|
|
async def test_process(con):
|
|
test_size = 0.4
|
|
start_date = datetime(2000, 1, 1).strftime("%Y-%m-%d")
|
|
end_date = datetime.today().strftime("%Y-%m-%d")
|
|
predictor = FundamentalPredictor()
|
|
df = await download_data('GME', con, start_date, end_date)
|
|
split_size = int(len(df) * (1-test_size))
|
|
test_data = df.iloc[split_size:]
|
|
#selected_features = [col for col in test_data if col not in ['price','date','Target']]
|
|
selected_features = ['shortTermCoverageRatios','netProfitMargin','debtRepayment','totalDebt','interestIncome','researchAndDevelopmentExpenses','priceEarningsToGrowthRatio','priceCashFlowRatio','cashPerShare','debtRatio','growthRevenue','revenue','growthNetIncome','ebitda','priceEarningsRatio','priceToBookRatio','epsdiluted','priceToSalesRatio','growthOtherCurrentLiabilities', 'receivablesTurnover', 'totalLiabilitiesAndStockholdersEquity', 'totalLiabilitiesAndTotalEquity', 'totalAssets', 'growthOtherCurrentAssets', 'retainedEarnings', 'totalEquity']
|
|
predictor.evaluate_model(test_data[selected_features], test_data['Target'])
|
|
|
|
|
|
async def run():
|
|
|
|
#Train first model
|
|
|
|
con = sqlite3.connect('stocks.db')
|
|
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 300E9")
|
|
stock_symbols = [row[0] for row in cursor.fetchall()]
|
|
print('Number of Stocks')
|
|
print(len(stock_symbols))
|
|
await train_process(stock_symbols, con)
|
|
|
|
|
|
#Prediction Steps for all stock symbols
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 1E9")
|
|
stock_symbols = [row[0] for row in cursor.fetchall()]
|
|
|
|
total_symbols = stock_symbols
|
|
|
|
print(f"Total tickers: {len(total_symbols)}")
|
|
start_date = datetime(2000, 1, 1).strftime("%Y-%m-%d")
|
|
end_date = datetime.today().strftime("%Y-%m-%d")
|
|
|
|
chunk_size = len(total_symbols) // 100 # Divide the list into N chunks
|
|
chunks = [total_symbols[i:i + chunk_size] for i in range(0, len(total_symbols), chunk_size)]
|
|
for chunk in chunks:
|
|
tasks = []
|
|
for ticker in tqdm(chunk):
|
|
tasks.append(process_symbol(ticker, con, start_date, end_date))
|
|
|
|
await asyncio.gather(*tasks)
|
|
|
|
con.close()
|
|
|
|
try:
|
|
asyncio.run(run())
|
|
except Exception as e:
|
|
print(e)
|
|
|