backend/app/cron_ai_score.py
2024-10-02 16:23:29 +02:00

437 lines
18 KiB
Python

import orjson
import asyncio
import aiohttp
import aiofiles
import sqlite3
from datetime import datetime
from ml_models.score_model import ScorePredictor
import yfinance as yf
from collections import defaultdict
import pandas as pd
from tqdm import tqdm
import concurrent.futures
import re
from itertools import combinations
from ta.momentum import *
from ta.trend import *
from ta.volatility import *
from ta.volume import *
import gc
#Enable automatic garbage collection
gc.enable()
async def save_json(symbol, data):
with open(f"json/ai-score/companies/{symbol}.json", 'wb') as file:
file.write(orjson.dumps(data))
def trend_intensity(close, window=20):
ma = close.rolling(window=window).mean()
std = close.rolling(window=window).std()
return ((close - ma) / std).abs().rolling(window=window).mean()
def calculate_fdi(high, low, close, window=30):
n1 = (np.log(high.rolling(window=window).max() - low.rolling(window=window).min()) -
np.log(close.rolling(window=window).max() - close.rolling(window=window).min())) / np.log(2)
return (2 - n1) * 100
async def download_data(ticker, con, start_date, end_date):
try:
# Define paths to the statement files
statements = [
f"json/financial-statements/ratios/quarter/{ticker}.json",
f"json/financial-statements/key-metrics/quarter/{ticker}.json",
#f"json/financial-statements/cash-flow-statement/quarter/{ticker}.json",
#f"json/financial-statements/income-statement/quarter/{ticker}.json",
#f"json/financial-statements/balance-sheet-statement/quarter/{ticker}.json",
f"json/financial-statements/income-statement-growth/quarter/{ticker}.json",
f"json/financial-statements/balance-sheet-statement-growth/quarter/{ticker}.json",
f"json/financial-statements/cash-flow-statement-growth/quarter/{ticker}.json",
#f"json/financial-statements/owner-earnings/quarter/{ticker}.json",
]
# Helper function to load JSON data asynchronously
async def load_json_from_file(path):
async with aiofiles.open(path, 'r') as f:
content = await f.read()
return orjson.loads(content)
# Helper function to filter data based on keys and year
async def filter_data(data, ignore_keys, year_threshold=2000):
return [{k: v for k, v in item.items() if k not in ignore_keys} for item in data if int(item["date"][:4]) >= year_threshold]
# Define keys to ignore
ignore_keys = ["symbol", "reportedCurrency", "calendarYear", "fillingDate", "acceptedDate", "period", "cik", "link", "finalLink","pbRatio","ptbRatio"]
# Load and filter data for each statement type
ratios = await load_json_from_file(statements[0])
ratios = await filter_data(ratios, ignore_keys)
#Threshold of enough datapoints needed!
if len(ratios) < 50:
return
key_metrics = await load_json_from_file(statements[1])
key_metrics = await filter_data(key_metrics, ignore_keys)
#cashflow = await load_json_from_file(statements[2])
#cashflow = await filter_data(cashflow, ignore_keys)
#income = await load_json_from_file(statements[3])
#income = await filter_data(income, ignore_keys)
#balance = await load_json_from_file(statements[4])
#balance = await filter_data(balance, ignore_keys)
income_growth = await load_json_from_file(statements[2])
income_growth = await filter_data(income_growth, ignore_keys)
balance_growth = await load_json_from_file(statements[3])
balance_growth = await filter_data(balance_growth, ignore_keys)
cashflow_growth = await load_json_from_file(statements[4])
cashflow_growth = await filter_data(cashflow_growth, ignore_keys)
#owner_earnings = await load_json_from_file(statements[8])
#owner_earnings = await filter_data(owner_earnings, ignore_keys)
# Combine all the data
combined_data = defaultdict(dict)
# Merge the data based on 'date'
for entries in zip(ratios, key_metrics,income_growth, balance_growth, cashflow_growth):
for entry in entries:
date = entry['date']
for key, value in entry.items():
if key not in combined_data[date]:
combined_data[date][key] = value
combined_data = list(combined_data.values())
# Download historical stock data using yfinance
df = yf.download(ticker, start=start_date, end=end_date, interval="1d").reset_index()
df = df.rename(columns={'Adj Close': 'close', 'Date': 'date', 'Open': 'open', 'High': 'high', 'Low': 'low', 'Volume': 'volume'})
df['date'] = df['date'].dt.strftime('%Y-%m-%d')
df['sma_50'] = df['close'].rolling(window=50).mean()
df['sma_200'] = df['close'].rolling(window=200).mean()
df['sma_crossover'] = ((df['sma_50'] > df['sma_200']) & (df['sma_50'].shift(1) <= df['sma_200'].shift(1))).astype(int)
df['ema_50'] = EMAIndicator(close=df['close'], window=50).ema_indicator()
df['ema_200'] = EMAIndicator(close=df['close'], window=200).ema_indicator()
df['ema_crossover'] = ((df['ema_50'] > df['ema_200']) & (df['ema_50'].shift(1) <= df['ema_200'].shift(1))).astype(int)
ichimoku = IchimokuIndicator(high=df['high'], low=df['low'])
df['ichimoku_a'] = ichimoku.ichimoku_a()
df['ichimoku_b'] = ichimoku.ichimoku_b()
df['atr'] = AverageTrueRange(high=df['high'], low=df['low'], close=df['close']).average_true_range()
bb = BollingerBands(close=df['close'])
df['bb_width'] = (bb.bollinger_hband() - bb.bollinger_lband()) / df['close']
df['volatility'] = df['close'].rolling(window=30).std()
df['daily_return'] = df['close'].pct_change()
df['cumulative_return'] = (1 + df['daily_return']).cumprod() - 1
df['volume_change'] = df['volume'].pct_change()
df['roc'] = df['close'].pct_change(periods=60)
df['avg_volume'] = df['volume'].rolling(window=60).mean()
df['drawdown'] = df['close'] / df['close'].rolling(window=252).max() - 1
df['macd'] = macd(df['close'])
df['macd_signal'] = macd_signal(df['close'])
df['macd_hist'] = 2*macd_diff(df['close'])
df['adx'] = adx(df['high'],df['low'],df['close'])
df["adx_pos"] = adx_pos(df['high'],df['low'],df['close'])
df["adx_neg"] = adx_neg(df['high'],df['low'],df['close'])
df['cci'] = CCIIndicator(high=df['high'], low=df['low'], close=df['close']).cci()
df['mfi'] = MFIIndicator(high=df['high'], low=df['low'], close=df['close'], volume=df['volume']).money_flow_index()
df['nvi'] = NegativeVolumeIndexIndicator(close=df['close'], volume=df['volume']).negative_volume_index()
df['obv'] = OnBalanceVolumeIndicator(close=df['close'], volume=df['volume']).on_balance_volume()
df['vpt'] = VolumePriceTrendIndicator(close=df['close'], volume=df['volume']).volume_price_trend()
df['rsi'] = rsi(df["close"], window=60)
df['rolling_rsi'] = df['rsi'].rolling(window=10).mean()
df['stoch_rsi'] = stochrsi_k(df['close'], window=60, smooth1=3, smooth2=3)
df['rolling_stoch_rsi'] = df['stoch_rsi'].rolling(window=10).mean()
df['adi'] = acc_dist_index(high=df['high'],low=df['low'],close=df['close'],volume=df['volume'])
df['cmf'] = chaikin_money_flow(high=df['high'],low=df['low'],close=df['close'],volume=df['volume'], window=20)
df['emv'] = ease_of_movement(high=df['high'],low=df['low'],volume=df['volume'], window=20)
df['fi'] = force_index(close=df['close'], volume=df['volume'], window= 13)
df['williams'] = WilliamsRIndicator(high=df['high'], low=df['low'], close=df['close']).williams_r()
df['kama'] = KAMAIndicator(close=df['close']).kama()
df['stoch'] = stoch(df['high'], df['low'], df['close'], window=30)
df['rocr'] = df['close'] / df['close'].shift(30) - 1 # Rate of Change Ratio (ROCR)
df['ppo'] = (df['ema_50'] - df['ema_200']) / df['ema_50'] * 100
df['vwap'] = (df['volume'] * (df['high'] + df['low'] + df['close']) / 3).cumsum() / df['volume'].cumsum()
df['volatility_ratio'] = df['close'].rolling(window=30).std() / df['close'].rolling(window=60).std()
df['fdi'] = calculate_fdi(df['high'], df['low'], df['close'])
df['tii'] = trend_intensity(df['close'])
ta_indicators = [
'rsi', 'macd', 'macd_signal', 'macd_hist', 'adx', 'adx_pos', 'adx_neg',
'cci', 'mfi', 'nvi', 'obv', 'vpt', 'stoch_rsi','bb_width',
'adi', 'cmf', 'emv', 'fi', 'williams', 'stoch','sma_crossover',
'volatility','daily_return','cumulative_return', 'roc','avg_volume',
'rolling_rsi','rolling_stoch_rsi', 'ema_crossover','ichimoku_a','ichimoku_b',
'atr','kama','rocr','ppo','volatility_ratio','vwap','tii','fdi','drawdown',
'volume_change'
]
# Match each combined data entry with the closest available stock price in df
for item in combined_data:
target_date = item['date']
counter = 0
max_attempts = 10
# Look for the closest matching date in the stock data
while target_date not in df['date'].values and counter < max_attempts:
target_date = (pd.to_datetime(target_date) - pd.Timedelta(days=1)).strftime('%Y-%m-%d')
counter += 1
# If max attempts are reached and no matching date is found, skip the entry
if counter == max_attempts:
continue
# Find the close price for the matching date
close_price = round(df[df['date'] == target_date]['close'].values[0], 2)
item['price'] = close_price
# Dynamically add all indicator values to the combined_data entry
for indicator in ta_indicators:
indicator_value = df[df['date'] == target_date][indicator].values[0]
item[indicator] = indicator_value # Add the indicator value to the combined_data entry
# Sort the combined data by date
combined_data = sorted(combined_data, key=lambda x: x['date'])
# Convert combined data into a DataFrame
df_combined = pd.DataFrame(combined_data).dropna()
'''
key_elements = [
'revenue',
'costOfRevenue',
'grossProfit',
'netIncome',
'operatingIncome',
'operatingExpenses',
'researchAndDevelopmentExpenses',
'ebitda',
'freeCashFlow',
'incomeBeforeTax',
'incomeTaxExpense',
'debtRepayment',
'dividendsPaid',
'depreciationAndAmortization',
'netCashUsedProvidedByFinancingActivities',
'changeInWorkingCapital',
'stockBasedCompensation',
'deferredIncomeTax',
'commonStockRepurchased',
'operatingCashFlow',
'capitalExpenditure',
'accountsReceivables',
'purchasesOfInvestments',
'cashAndCashEquivalents',
'shortTermInvestments',
'cashAndShortTermInvestments',
'longTermInvestments',
'otherCurrentLiabilities',
'totalCurrentLiabilities',
'longTermDebt',
'totalDebt',
'netDebt',
'commonStock',
'totalEquity',
'totalLiabilitiesAndStockholdersEquity',
'totalStockholdersEquity',
'totalInvestments',
'taxAssets',
'totalAssets',
'inventory',
'propertyPlantEquipmentNet',
'ownersEarnings',
]
# Compute ratios for all combinations of key elements
new_columns = {}
# Loop over combinations of column pairs
for num, denom in combinations(key_elements, 2):
# Compute ratio and reverse ratio
ratio = df_combined[num] / df_combined[denom]
reverse_ratio = df_combined[denom] / df_combined[num]
# Define column names for both ratios
column_name = f'{num}_to_{denom}'
reverse_column_name = f'{denom}_to_{num}'
# Store the new columns in the dictionary, replacing invalid values with 0
new_columns[column_name] = np.nan_to_num(ratio, nan=0, posinf=0, neginf=0)
new_columns[reverse_column_name] = np.nan_to_num(reverse_ratio, nan=0, posinf=0, neginf=0)
# Add all new columns to the original DataFrame at once
df_combined = pd.concat([df_combined, pd.DataFrame(new_columns)], axis=1)
'''
# To defragment the DataFrame, make a copy
df_combined = df_combined.copy()
# Create 'Target' column based on price change
df_combined['Target'] = ((df_combined['price'].shift(-1) - df_combined['price']) / df_combined['price'] > 0).astype(int)
# Return a copy of the combined DataFrame
df_combined = df_combined.dropna()
df_combined = df_combined.where(~df_combined.isin([np.inf, -np.inf]), 0)
df_copy = df_combined.copy()
return df_copy
except Exception as e:
print(e)
pass
async def chunked_gather(tickers, con, start_date, end_date, chunk_size=10):
# Helper function to divide the tickers into chunks
def chunks(lst, size):
for i in range(0, len(lst), size):
yield lst[i:i+size]
results = []
for chunk in chunks(tickers, chunk_size):
# Create tasks for each chunk
tasks = [download_data(ticker, con, start_date, end_date) for ticker in chunk]
# Await the results for the current chunk
chunk_results = await asyncio.gather(*tasks)
# Accumulate the results
results.extend(chunk_results)
return results
async def warm_start_training(tickers, con):
start_date = datetime(1995, 1, 1).strftime("%Y-%m-%d")
end_date = datetime.today().strftime("%Y-%m-%d")
df_train = pd.DataFrame()
df_test = pd.DataFrame()
test_size = 0.2
dfs = await chunked_gather(tickers, con, start_date, end_date, chunk_size=10)
train_list = []
test_list = []
for df in dfs:
try:
split_size = int(len(df) * (1 - test_size))
train_data = df.iloc[:split_size]
test_data = df.iloc[split_size:]
# Append to the lists
train_list.append(train_data)
test_list.append(test_data)
except:
pass
# Concatenate all at once outside the loop
df_train = pd.concat(train_list, ignore_index=True)
df_test = pd.concat(test_list, ignore_index=True)
print('======Warm Start Train Set Datapoints======')
df_train = df_train.sample(frac=1).reset_index(drop=True) #df_train.reset_index(drop=True)
print(len(df_train))
predictor = ScorePredictor()
selected_features = [col for col in df_train if col not in ['price', 'date', 'Target']]
predictor.warm_start_training(df_train[selected_features], df_train['Target'])
predictor.evaluate_model(df_test[selected_features], df_test['Target'])
return predictor
async def fine_tune_and_evaluate(ticker, con, start_date, end_date):
try:
df = await download_data(ticker, con, start_date, end_date)
if df is None or len(df) == 0:
print(f"No data available for {ticker}")
return
test_size = 0.2
split_size = int(len(df) * (1-test_size))
train_data = df.iloc[:split_size]
test_data = df.iloc[split_size:]
selected_features = [col for col in df.columns if col not in ['date','price','Target']]
# Fine-tune the model
predictor = ScorePredictor()
predictor.fine_tune_model(train_data[selected_features], train_data['Target'])
print(f"Evaluating fine-tuned model for {ticker}")
data = predictor.evaluate_model(test_data[selected_features], test_data['Target'])
if len(data) != 0:
if data['precision'] >= 60 and data['accuracy'] >= 60 and data['accuracy'] < 100 and data['precision'] < 100:
res = {'score': data['score']}
await save_json(ticker, res)
print(f"Saved results for {ticker}")
gc.collect()
except Exception as e:
print(f"Error processing {ticker}: {e}")
finally:
# Ensure any remaining cleanup if necessary
if 'predictor' in locals():
del predictor # Explicitly delete the predictor to aid garbage collection
async def run():
train_mode = False # Set this to False for fine-tuning and evaluation
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
if train_mode:
# Warm start training
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 300E9 AND symbol NOT LIKE '%.%' AND symbol NOT LIKE '%-%'")
warm_start_symbols = [row[0] for row in cursor.fetchall()]
print('Warm Start Training for:', warm_start_symbols)
predictor = await warm_start_training(warm_start_symbols, con)
else:
# Fine-tuning and evaluation for all stocks
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 1E9 AND symbol NOT LIKE '%.%'")
stock_symbols = ['GME'] #[row[0] for row in cursor.fetchall()]
print(f"Total tickers for fine-tuning: {len(stock_symbols)}")
start_date = datetime(1995, 1, 1).strftime("%Y-%m-%d")
end_date = datetime.today().strftime("%Y-%m-%d")
tasks = []
for ticker in tqdm(stock_symbols):
await fine_tune_and_evaluate(ticker, con, start_date, end_date)
#await asyncio.gather(*tasks)
con.close()
if __name__ == "__main__":
try:
asyncio.run(run())
except Exception as e:
print(f"Main execution error: {e}")