backend/app/cron_earnings.py
2024-12-20 20:26:15 +01:00

221 lines
9.8 KiB
Python

import aiohttp
import aiofiles
import ujson
import orjson
import sqlite3
import asyncio
import pandas as pd
import os
from dotenv import load_dotenv
from datetime import datetime, timedelta
from tqdm import tqdm
import pytz
headers = {"accept": "application/json"}
url = "https://api.benzinga.com/api/v2.1/calendar/earnings"
load_dotenv()
api_key = os.getenv('BENZINGA_API_KEY')
ny_tz = pytz.timezone('America/New_York')
today = datetime.now(ny_tz).replace(hour=0, minute=0, second=0, microsecond=0)
min_date = ny_tz.localize(datetime.strptime("2015-01-01", "%Y-%m-%d"))
N_days_ago = today - timedelta(days=10)
query_template = """
SELECT date, open, high, low, close
FROM "{ticker}"
WHERE date >= ?
"""
def check_existing_file(ticker, folder_name):
file_path = f"json/earnings/{folder_name}/{ticker}.json"
still_new = False
if os.path.exists(file_path):
try:
with open(file_path, 'r') as file:
existing_data = ujson.load(file)
date_obj = datetime.strptime(existing_data['date'], "%Y-%m-%d")
if date_obj.tzinfo is None:
date_obj = date_obj.replace(tzinfo=pytz.UTC)
if folder_name == 'surprise':
if date_obj+timedelta(1) >= N_days_ago:
still_new = True
elif folder_name == 'next':
if date_obj+timedelta(1) >= today:
still_new = True
if still_new == False:
os.remove(file_path)
print(f"Deleted file for {ticker}.")
except Exception as e:
print(f"Error processing existing file for {ticker}: {e}")
async def save_json(data, symbol, dir_path):
file_path = os.path.join(dir_path, f"{symbol}.json")
async with aiofiles.open(file_path, 'w') as file:
await file.write(ujson.dumps(data))
async def get_past_data(data, ticker, con):
# Filter data based on date constraints
filtered_data = []
for item in data:
try:
item_date = ny_tz.localize(datetime.strptime(item["date"], "%Y-%m-%d"))
if min_date <= item_date <= today:
filtered_data.append(
{
'revenue': float(item['revenue']),
'revenueEst': float(item['revenue_est']),
'revenueSurprisePercent': round(float(item['revenue_surprise_percent'])*100, 2),
'eps': round(float(item['eps']), 2),
'epsEst': round(float(item['eps_est']), 2),
'epsSurprisePercent': round(float(item['eps_surprise_percent'])*100, 2),
'year': item['period_year'],
'quarter': item['period'],
'date': item['date']
}
)
except:
pass
# Sort the filtered data by date
if len(filtered_data) > 0:
filtered_data.sort(key=lambda x: x['date'], reverse=True)
try:
# Load the price history data
with open(f"json/historical-price/max/{ticker}.json") as file:
price_history = orjson.loads(file.read())
# Convert price_history dates to datetime objects for easy comparison
price_history_dict = {
datetime.strptime(item['time'], "%Y-%m-%d"): item for item in price_history
}
# Calculate volatility for each earnings release
for entry in filtered_data:
earnings_date = datetime.strptime(entry['date'], "%Y-%m-%d")
volatility_prices = []
# Collect prices from (X-2) to (X+1)
for i in range(-2, 2):
current_date = earnings_date + timedelta(days=i)
if current_date in price_history_dict:
volatility_prices.append(price_history_dict[current_date])
# Calculate volatility if we have at least one price entry
if volatility_prices:
high_prices = [day['high'] for day in volatility_prices]
low_prices = [day['low'] for day in volatility_prices]
close_prices = [day['close'] for day in volatility_prices]
max_high = max(high_prices)
min_low = min(low_prices)
avg_close = sum(close_prices) / len(close_prices)
# Volatility percentage calculation
volatility = round(((max_high - min_low) / avg_close) * 100, 2)
else:
volatility = None # No data available for volatility calculation
# Add the volatility to the entry
entry['volatility'] = volatility
# Save the updated filtered_data
await save_json(filtered_data, ticker, 'json/earnings/past')
except:
pass
async def get_data(session, ticker, con):
querystring = {"token": api_key, "parameters[tickers]": ticker}
try:
async with session.get(url, params=querystring, headers=headers) as response:
data = ujson.loads(await response.text())['earnings']
await get_past_data(data, ticker, con)
# Filter for future earnings
future_dates = [item for item in data if ny_tz.localize(datetime.strptime(item["date"], "%Y-%m-%d")) >= today]
if future_dates:
nearest_future = min(future_dates, key=lambda x: datetime.strptime(x["date"], "%Y-%m-%d"))
try:
symbol = nearest_future['ticker']
time = nearest_future['time']
date = nearest_future['date']
eps_prior = float(nearest_future['eps_prior']) if nearest_future['eps_prior'] else None
eps_est = float(nearest_future['eps_est']) if nearest_future['eps_est'] else None
revenue_est = float(nearest_future['revenue_est']) if nearest_future['revenue_est'] else None
revenue_prior = float(nearest_future['revenue_prior']) if nearest_future['revenue_prior'] else None
if revenue_est is not None and revenue_prior is not None and eps_prior is not None and eps_est is not None:
res_list = {
'date': date,
'time': time,
'epsPrior': eps_prior,
'epsEst': eps_est,
'revenuePrior': revenue_prior,
'revenueEst': revenue_est
}
await save_json(res_list, symbol, 'json/earnings/next')
except Exception as e:
print(e)
pass
else:
check_existing_file(ticker, "next")
# Filter for past earnings within the last 20 days
recent_dates = [item for item in data if N_days_ago <= ny_tz.localize(datetime.strptime(item["date"], "%Y-%m-%d")) <= today]
if recent_dates:
nearest_recent = min(recent_dates, key=lambda x: datetime.strptime(x["date"], "%Y-%m-%d"))
try:
date = nearest_recent['date']
eps_prior = float(nearest_recent['eps_prior']) if nearest_recent['eps_prior'] != '' else None
eps_surprise = float(nearest_recent['eps_surprise']) if nearest_recent['eps_surprise'] != '' else None
eps = float(nearest_recent['eps']) if nearest_recent['eps'] != '' else None
revenue_prior = float(nearest_recent['revenue_prior']) if nearest_recent['revenue_prior'] != '' else None
revenue_surprise = float(nearest_recent['revenue_surprise']) if nearest_recent['revenue_surprise'] != '' else None
revenue = float(nearest_recent['revenue']) if nearest_recent['revenue'] != '' else None
if revenue is not None and revenue_prior is not None and eps_prior is not None and eps is not None and revenue_surprise is not None and eps_surprise is not None:
res_list = {
'epsPrior':eps_prior,
'epsSurprise': eps_surprise,
'eps': eps,
'revenuePrior': revenue_prior,
'revenueSurprise': revenue_surprise,
'revenue': revenue,
'date': date,
}
await save_json(res_list, symbol, 'json/earnings/surprise')
except Exception as e:
print(e)
else:
check_existing_file(ticker, "surprise")
except Exception as e:
print(e)
#pass
async def run(stock_symbols, con):
async with aiohttp.ClientSession() as session:
tasks = [get_data(session, symbol, con) for symbol in stock_symbols]
for f in tqdm(asyncio.as_completed(tasks), total=len(stock_symbols)):
await f
try:
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%' AND symbol NOT LIKE '%-%'")
stock_symbols = [row[0] for row in cursor.fetchall()]
#stock_symbols = ['TSLA']
asyncio.run(run(stock_symbols, con))
except Exception as e:
print(e)
finally:
con.close()