318 lines
12 KiB
Python
318 lines
12 KiB
Python
import os
|
|
import pandas as pd
|
|
import orjson
|
|
from dotenv import load_dotenv
|
|
import sqlite3
|
|
from datetime import datetime, timedelta
|
|
import asyncio
|
|
import aiohttp
|
|
import pytz
|
|
import requests # Add missing import
|
|
from collections import defaultdict
|
|
from GetStartEndDate import GetStartEndDate
|
|
from tqdm import tqdm
|
|
|
|
import re
|
|
|
|
|
|
load_dotenv()
|
|
fmp_api_key = os.getenv('FMP_API_KEY')
|
|
|
|
|
|
ny_tz = pytz.timezone('America/New_York')
|
|
|
|
|
|
|
|
def save_json(data):
|
|
directory = "json/market-flow"
|
|
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
|
|
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
|
|
file.write(orjson.dumps(data))
|
|
|
|
|
|
def safe_round(value):
|
|
try:
|
|
return round(float(value), 2)
|
|
except (ValueError, TypeError):
|
|
return value
|
|
|
|
# Function to convert and match timestamps
|
|
def add_close_to_data(price_list, data):
|
|
for entry in data:
|
|
formatted_time = entry['time']
|
|
# Match with price_list
|
|
for price in price_list:
|
|
if price['date'] == formatted_time:
|
|
entry['close'] = price['close']
|
|
break # Match found, no need to continue searching
|
|
return data
|
|
|
|
|
|
|
|
async def get_stock_chart_data(ticker):
|
|
start_date_1d, end_date_1d = GetStartEndDate().run()
|
|
start_date = start_date_1d.strftime("%Y-%m-%d")
|
|
end_date = end_date_1d.strftime("%Y-%m-%d")
|
|
|
|
url = f"https://financialmodelingprep.com/api/v3/historical-chart/1min/{ticker}?from={start_date}&to={end_date}&apikey={fmp_api_key}"
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.get(url) as response:
|
|
if response.status == 200:
|
|
data = await response.json()
|
|
data = sorted(data, key=lambda x: x['date'])
|
|
return data
|
|
else:
|
|
return []
|
|
|
|
|
|
|
|
def get_market_tide(interval_5m=True):
|
|
res_list = []
|
|
|
|
# Track changes per interval using a defaultdict.
|
|
delta_data = defaultdict(lambda: {
|
|
'cumulative_net_call_premium': 0,
|
|
'cumulative_net_put_premium': 0,
|
|
'call_ask_vol': 0,
|
|
'call_bid_vol': 0,
|
|
'put_ask_vol': 0,
|
|
'put_bid_vol': 0
|
|
})
|
|
|
|
# Process for each ticker (in this case only 'SPY')
|
|
for ticker in tqdm(['SPY']):
|
|
# Load the data from JSON.
|
|
with open("json/options-flow/feed/data.json", "r") as file:
|
|
data = orjson.loads(file.read())
|
|
|
|
# Filter and sort data for the given ticker.
|
|
data = [item for item in data if item['ticker'] == ticker]
|
|
data.sort(key=lambda x: x['time'])
|
|
# Process each item in the data
|
|
for item in data:
|
|
try:
|
|
# Combine date and time from the item.
|
|
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
|
|
# Truncate to the start of the minute.
|
|
dt = dt.replace(second=0, microsecond=0)
|
|
|
|
# Adjust for 5-minute intervals if requested.
|
|
if interval_5m:
|
|
# Round down minutes to the nearest 5-minute mark.
|
|
minute = dt.minute - (dt.minute % 5)
|
|
dt = dt.replace(minute=minute)
|
|
|
|
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
# Extract metrics.
|
|
cost = float(item.get("cost_basis", 0))
|
|
sentiment = item.get("sentiment", "")
|
|
put_call = item.get("put_call", "")
|
|
vol = int(item.get("volume", 0))
|
|
|
|
# Update premium and volume metrics.
|
|
if put_call == "Calls":
|
|
if sentiment == "Bullish":
|
|
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
|
|
delta_data[rounded_ts]['call_ask_vol'] += vol
|
|
elif sentiment == "Bearish":
|
|
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
|
|
delta_data[rounded_ts]['call_bid_vol'] += vol
|
|
elif put_call == "Puts":
|
|
if sentiment == "Bullish":
|
|
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
|
|
delta_data[rounded_ts]['put_ask_vol'] += vol
|
|
elif sentiment == "Bearish":
|
|
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
|
|
delta_data[rounded_ts]['put_bid_vol'] += vol
|
|
|
|
except Exception as e:
|
|
print(f"Error processing item: {e}")
|
|
|
|
# Calculate cumulative values over time.
|
|
sorted_ts = sorted(delta_data.keys())
|
|
cumulative = {
|
|
'net_call_premium': 0,
|
|
'net_put_premium': 0,
|
|
'call_ask': 0,
|
|
'call_bid': 0,
|
|
'put_ask': 0,
|
|
'put_bid': 0
|
|
}
|
|
|
|
for ts in sorted_ts:
|
|
# Update cumulative values.
|
|
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
|
|
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
|
|
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
|
|
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
|
|
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
|
|
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
|
|
|
|
# Calculate derived metrics.
|
|
call_volume = cumulative['call_ask'] + cumulative['call_bid']
|
|
put_volume = cumulative['put_ask'] + cumulative['put_bid']
|
|
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
|
|
|
|
res_list.append({
|
|
'time': ts,
|
|
'ticker': ticker,
|
|
'net_call_premium': round(cumulative['net_call_premium']),
|
|
'net_put_premium': round(cumulative['net_put_premium']),
|
|
'call_volume': round(call_volume),
|
|
'put_volume': round(put_volume),
|
|
'net_volume': round(net_volume),
|
|
})
|
|
|
|
# Sort the results list by time.
|
|
res_list.sort(key=lambda x: x['time'])
|
|
|
|
# Retrieve price list data (either via asyncio or from file as a fallback).
|
|
price_list = asyncio.run(get_stock_chart_data('SPY'))
|
|
if len(price_list) == 0:
|
|
with open("json/one-day-price/SPY.json", "r") as file:
|
|
price_list = orjson.loads(file.read())
|
|
|
|
# Append closing prices to the data.
|
|
data = add_close_to_data(price_list, res_list)
|
|
|
|
# Ensure that each minute until 16:10:00 is present in the data.
|
|
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
|
|
last_time = datetime.strptime(data[-1]['time'], "%Y-%m-%d %H:%M:%S")
|
|
end_time = last_time.replace(hour=16, minute=5, second=0)
|
|
|
|
while last_time < end_time:
|
|
last_time += timedelta(minutes=1)
|
|
data.append({
|
|
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
|
|
'ticker': ticker,
|
|
**{field: None for field in fields}
|
|
})
|
|
|
|
return data
|
|
|
|
def get_top_sector_tickers():
|
|
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
|
|
sector_list = [
|
|
"Basic Materials",
|
|
"Communication Services",
|
|
"Consumer Cyclical",
|
|
"Consumer Defensive",
|
|
"Energy",
|
|
"Financial Services",
|
|
"Healthcare",
|
|
"Industrials",
|
|
"Real Estate",
|
|
"Technology",
|
|
"Utilities",
|
|
]
|
|
headers = {
|
|
"Accept": "application/json, text/plain",
|
|
"Authorization": api_key
|
|
}
|
|
url = "https://api.unusualwhales.com/api/screener/stocks"
|
|
|
|
res_list = {}
|
|
|
|
for sector in sector_list:
|
|
querystring = {
|
|
'order': 'net_premium',
|
|
'order_direction': 'desc',
|
|
'sectors[]': sector
|
|
}
|
|
|
|
response = requests.get(url, headers=headers, params=querystring)
|
|
data = response.json().get('data', [])
|
|
|
|
updated_data = []
|
|
for item in data[:10]:
|
|
try:
|
|
new_item = {key: safe_round(value) for key, value in item.items()}
|
|
with open(f"json/quote/{item['ticker']}.json") as file:
|
|
quote_data = orjson.loads(file.read())
|
|
new_item['name'] = quote_data['name']
|
|
new_item['price'] = round(float(quote_data['price']), 2)
|
|
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
|
|
|
|
new_item['ivRank'] = round(float(new_item['iv_rank']),2)
|
|
new_item['gexRatio'] = new_item['gex_ratio']
|
|
new_item['gexNetChange'] = new_item['gex_net_change']
|
|
new_item['netCallPremium'] = new_item['net_call_premium']
|
|
new_item['netPutPremium'] = new_item['net_put_premium']
|
|
|
|
new_item['netPremium'] = abs(new_item['netCallPremium'] - new_item['netPutPremium'])
|
|
# Filter new_item to keep only specified elements
|
|
filtered_item = {key: new_item[key] for key in keep_elements if key in new_item}
|
|
updated_data.append(filtered_item)
|
|
except Exception as e:
|
|
print(f"Error processing ticker {item.get('ticker', 'unknown')}: {e}")
|
|
|
|
# Add rank to each item
|
|
for rank, item in enumerate(updated_data, 1):
|
|
item['rank'] = rank
|
|
res_list[sector] = updated_data
|
|
|
|
return res_list
|
|
|
|
|
|
def get_top_spy_tickers():
|
|
with open(f"json/stocks-list/sp500_constituent.json", "r") as file:
|
|
data = orjson.loads(file.read())
|
|
|
|
res_list = []
|
|
for item in data:
|
|
try:
|
|
symbol = item['symbol']
|
|
with open(f"json/options-stats/companies/{symbol}.json","r") as file:
|
|
stats_data = orjson.loads(file.read())
|
|
|
|
new_item = {key: safe_round(value) for key, value in stats_data.items()}
|
|
|
|
with open(f"json/quote/{symbol}.json") as file:
|
|
quote_data = orjson.loads(file.read())
|
|
new_item['symbol'] = symbol
|
|
new_item['name'] = quote_data['name']
|
|
new_item['price'] = round(float(quote_data['price']), 2)
|
|
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
|
|
|
|
if new_item['net_premium']:
|
|
res_list.append(new_item)
|
|
except:
|
|
pass
|
|
|
|
# Add rank to each item
|
|
res_list = sorted(res_list, key=lambda item: item['net_premium'], reverse=True)
|
|
|
|
for rank, item in enumerate(res_list, 1):
|
|
item['rank'] = rank
|
|
|
|
return res_list
|
|
|
|
|
|
|
|
def main():
|
|
top_sector_tickers = {}
|
|
|
|
market_tide = get_market_tide()
|
|
top_spy_tickers = get_top_spy_tickers()
|
|
top_sector_tickers['SPY'] = top_spy_tickers[:10]
|
|
|
|
data = {'marketTide': market_tide, 'topSectorTickers': top_sector_tickers}
|
|
|
|
if data:
|
|
save_json(data)
|
|
|
|
'''
|
|
sector_data = get_sector_data()
|
|
top_sector_tickers = get_top_sector_tickers()
|
|
top_spy_tickers = get_top_spy_tickers()
|
|
top_sector_tickers['SPY'] = top_spy_tickers
|
|
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
|
|
'''
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|