319 lines
12 KiB
Python
Executable File
319 lines
12 KiB
Python
Executable File
from datetime import date, datetime, timedelta, time
|
|
import ujson
|
|
import sqlite3
|
|
import pandas as pd
|
|
import asyncio
|
|
import aiohttp
|
|
import pytz
|
|
|
|
from GetStartEndDate import GetStartEndDate
|
|
|
|
#Update Market Movers Price, ChangesPercentage, Volume and MarketCap regularly
|
|
berlin_tz = pytz.timezone('Europe/Berlin')
|
|
|
|
from dotenv import load_dotenv
|
|
import os
|
|
load_dotenv()
|
|
api_key = os.getenv('FMP_API_KEY')
|
|
|
|
|
|
market_cap_threshold = 1E6
|
|
volume_threshold = 50_000
|
|
|
|
async def get_todays_data(ticker):
|
|
|
|
current_weekday = datetime.today().weekday()
|
|
current_time_berlin = datetime.now(berlin_tz)
|
|
is_afternoon = current_time_berlin.hour > 15 or (current_time_berlin.hour == 15 and current_time_berlin.minute >= 30)
|
|
|
|
start_date_1d, end_date_1d = GetStartEndDate().run()
|
|
|
|
url = f"https://financialmodelingprep.com/api/v3/historical-chart/1min/{ticker}?from={start_date_1d}&to={end_date_1d}&apikey={api_key}"
|
|
|
|
df_1d = pd.DataFrame()
|
|
|
|
current_date = start_date_1d
|
|
target_time = time(15,30)
|
|
extract_date = current_date.strftime('%Y-%m-%d')
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
responses = await asyncio.gather(session.get(url))
|
|
|
|
for response in responses:
|
|
try:
|
|
json_data = await response.json()
|
|
df_1d = pd.DataFrame(json_data).iloc[::-1].reset_index(drop=True)
|
|
opening_price = df_1d['open'].iloc[0]
|
|
df_1d = df_1d.drop(['open', 'high', 'low', 'volume'], axis=1)
|
|
df_1d = df_1d.round(2).rename(columns={"date": "time", "close": "value"})
|
|
|
|
if current_weekday == 5 or current_weekday == 6:
|
|
pass
|
|
else:
|
|
if current_date.time() < target_time:
|
|
pass
|
|
else:
|
|
end_time = pd.to_datetime(f'{extract_date} 16:00:00')
|
|
new_index = pd.date_range(start=df_1d['time'].iloc[-1], end=end_time, freq='1min')
|
|
|
|
remaining_df = pd.DataFrame(index=new_index, columns=['value'])
|
|
remaining_df = remaining_df.reset_index().rename(columns={"index": "time"})
|
|
remaining_df['time'] = remaining_df['time'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
|
remainind_df = remaining_df.set_index('time')
|
|
|
|
df_1d = pd.concat([df_1d, remaining_df[1:: ]])
|
|
#To-do FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
|
|
|
|
df_1d = ujson.loads(df_1d.to_json(orient="records"))
|
|
except:
|
|
df_1d = []
|
|
return df_1d
|
|
|
|
async def get_jsonparsed_data(session, url):
|
|
async with session.get(url) as response:
|
|
data = await response.json()
|
|
return data
|
|
|
|
async def get_quote_of_stocks(ticker_list):
|
|
ticker_str = ','.join(ticker_list)
|
|
async with aiohttp.ClientSession() as session:
|
|
url = f"https://financialmodelingprep.com/api/v3/quote/{ticker_str}?apikey={api_key}"
|
|
async with session.get(url) as response:
|
|
df = await response.json()
|
|
return df
|
|
|
|
|
|
async def get_gainer_loser_active_stocks():
|
|
|
|
#Database read 1y and 3y data
|
|
query_fundamental_template = """
|
|
SELECT
|
|
marketCap
|
|
FROM
|
|
stocks
|
|
WHERE
|
|
symbol = ?
|
|
"""
|
|
|
|
query_template = """
|
|
SELECT
|
|
volume
|
|
FROM
|
|
"{ticker}"
|
|
ORDER BY
|
|
rowid DESC
|
|
LIMIT 1
|
|
"""
|
|
|
|
async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl=False)) as session:
|
|
gainer_url = f"https://financialmodelingprep.com/api/v3/stock_market/gainers?apikey={api_key}"
|
|
loser_url = f"https://financialmodelingprep.com/api/v3/stock_market/losers?apikey={api_key}"
|
|
active_url = f"https://financialmodelingprep.com/api/v3/stock_market/actives?apikey={api_key}"
|
|
|
|
# Gather all the HTTP requests concurrently
|
|
tasks = [
|
|
get_jsonparsed_data(session, gainer_url),
|
|
get_jsonparsed_data(session, loser_url),
|
|
get_jsonparsed_data(session, active_url)
|
|
]
|
|
|
|
gainer_json, loser_json, active_json = await asyncio.gather(*tasks)
|
|
|
|
|
|
|
|
gainer_json = [{k: v for k, v in stock.items() if stock['symbol'] in symbols} for stock in gainer_json]
|
|
gainer_json = [entry for entry in gainer_json if entry]
|
|
|
|
loser_json = [{k: v for k, v in stock.items() if stock['symbol'] in symbols} for stock in loser_json]
|
|
loser_json = [entry for entry in loser_json if entry]
|
|
|
|
active_json = [{k: v for k, v in stock.items() if stock['symbol'] in symbols} for stock in active_json]
|
|
active_json = [entry for entry in active_json if entry]
|
|
|
|
# Process gainer_json to add marketCap and volume data
|
|
filtered_gainer_json = []
|
|
for entry in gainer_json:
|
|
try:
|
|
symbol = entry['symbol']
|
|
query = query_template.format(ticker=symbol)
|
|
fundamental_data = pd.read_sql_query(query_fundamental_template, con, params=(symbol,))
|
|
volume = pd.read_sql_query(query, con)
|
|
entry['marketCap'] = int(fundamental_data['marketCap'].iloc[0])
|
|
entry['volume'] = int(volume['volume'].iloc[0])
|
|
if entry['marketCap'] >= market_cap_threshold and entry['volume'] >= volume_threshold:
|
|
filtered_gainer_json.append(entry)
|
|
except:
|
|
entry['marketCap'] = None
|
|
entry['volume'] = None
|
|
|
|
# Process loser_json to add marketCap and volume data
|
|
filtered_loser_json = []
|
|
for entry in loser_json:
|
|
try:
|
|
symbol = entry['symbol']
|
|
query = query_template.format(ticker=symbol)
|
|
fundamental_data = pd.read_sql_query(query_fundamental_template, con, params=(symbol,))
|
|
volume = pd.read_sql_query(query, con)
|
|
entry['marketCap'] = int(fundamental_data['marketCap'].iloc[0])
|
|
entry['volume'] = int(volume['volume'].iloc[0])
|
|
if entry['marketCap'] >= market_cap_threshold and entry['volume'] >= volume_threshold:
|
|
filtered_loser_json.append(entry)
|
|
except:
|
|
entry['marketCap'] = None
|
|
entry['volume'] = None
|
|
|
|
|
|
|
|
filtered_active_json = []
|
|
for entry in active_json:
|
|
try:
|
|
symbol = entry['symbol']
|
|
query = query_template.format(ticker=symbol)
|
|
fundamental_data = pd.read_sql_query(query_fundamental_template, con, params=(symbol,))
|
|
volume = pd.read_sql_query(query, con)
|
|
entry['marketCap'] = int(fundamental_data['marketCap'].iloc[0])
|
|
entry['volume'] = int(volume['volume'].iloc[0])
|
|
filtered_active_json.append(entry)
|
|
except:
|
|
entry['marketCap'] = None
|
|
entry['volume'] = None
|
|
|
|
filtered_active_json = sorted(filtered_active_json, key=lambda x: (x['marketCap'] >= 10**9, x['volume']), reverse=True)
|
|
|
|
|
|
stocks = filtered_gainer_json[:20] + filtered_loser_json[:20] + filtered_active_json[:20]
|
|
|
|
#remove change key element
|
|
stocks = [{k: v for k, v in stock.items() if k != "change"} for stock in stocks]
|
|
|
|
day_gainer_json = stocks[:20]
|
|
day_loser_json = stocks[20:40]
|
|
day_active_json = stocks[40:60]
|
|
|
|
query_market_movers = """
|
|
SELECT
|
|
gainer,loser,most_active
|
|
FROM
|
|
market_movers
|
|
"""
|
|
past_gainer = pd.read_sql_query(query_market_movers, con)
|
|
|
|
gainer_json = eval(past_gainer['gainer'].iloc[0])
|
|
loser_json = eval(past_gainer['loser'].iloc[0])
|
|
active_json = eval(past_gainer['most_active'].iloc[0])
|
|
|
|
gainer_json['1D'] = day_gainer_json
|
|
loser_json['1D'] = day_loser_json
|
|
active_json['1D'] = day_active_json #sorted(day_active_json, key=lambda x: x.get('volume', 0) if x.get('volume') is not None else 0, reverse=True)
|
|
|
|
|
|
data = {'gainers': gainer_json, 'losers': loser_json, 'active': active_json}
|
|
#Extract all unique symbols from gainer,loser, active
|
|
unique_symbols = set()
|
|
|
|
# Iterate through time periods, categories, and symbols
|
|
for time_period in data.keys():
|
|
for category in data[time_period].keys():
|
|
for stock_data in data[time_period][category]:
|
|
symbol = stock_data["symbol"]
|
|
unique_symbols.add(symbol)
|
|
|
|
# Convert the set to a list if needed
|
|
unique_symbols_list = list(unique_symbols)
|
|
|
|
#Get the latest quote of all unique symbol and map it back to the original data list to update all values
|
|
|
|
latest_quote = await get_quote_of_stocks(unique_symbols_list)
|
|
# Updating values in the data list based on matching symbols from the quote list
|
|
for time_period in data.keys():
|
|
for category in data[time_period].keys():
|
|
for stock_data in data[time_period][category]:
|
|
symbol = stock_data["symbol"]
|
|
quote_stock = next((item for item in latest_quote if item["symbol"] == symbol), None)
|
|
if quote_stock:
|
|
stock_data['price'] = quote_stock['price']
|
|
stock_data['changesPercentage'] = quote_stock['changesPercentage']
|
|
stock_data['marketCap'] = quote_stock['marketCap']
|
|
stock_data['volume'] = quote_stock['volume']
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
async def get_historical_data():
|
|
res_list = []
|
|
ticker_list = ['SPY', 'QQQ', 'DIA', 'IWM', 'IVV']
|
|
latest_quote = await get_quote_of_stocks(ticker_list)
|
|
|
|
for quote in latest_quote:
|
|
ticker = quote['symbol']
|
|
df = await get_todays_data(ticker)
|
|
res_list.append({'symbol': ticker, 'priceData': df, 'changesPercentage': round(quote['changesPercentage'],2), 'previousClose': round(quote['previousClose'],2)})
|
|
|
|
return res_list
|
|
|
|
async def get_pre_post_market_movers(symbols):
|
|
res_list = []
|
|
|
|
# Loop through the symbols and load the corresponding JSON files
|
|
for symbol in symbols:
|
|
try:
|
|
# Load the main quote JSON file
|
|
with open(f"json/quote/{symbol}.json", "r") as file:
|
|
data = ujson.load(file)
|
|
market_cap = int(data.get('marketCap', 0))
|
|
name = data.get('name',None)
|
|
# If market cap is >= 10 million, proceed to load pre-post quote data
|
|
if market_cap >= 10**7:
|
|
try:
|
|
with open(f"json/pre-post-quote/{symbol}.json", "r") as file:
|
|
pre_post_data = ujson.load(file)
|
|
price = pre_post_data.get("price", None)
|
|
changes_percentage = pre_post_data.get("changesPercentage", None)
|
|
if price and changes_percentage:
|
|
res_list.append({
|
|
"symbol": symbol,
|
|
"name": name,
|
|
"price": price,
|
|
"changesPercentage": changes_percentage
|
|
})
|
|
except:
|
|
pass
|
|
|
|
except:
|
|
pass
|
|
|
|
|
|
# Sort the list by changesPercentage in descending order and slice the top 10
|
|
top_5_gainers = sorted(res_list, key=lambda x: x['changesPercentage'], reverse=True)[:5]
|
|
top_5_losers = sorted(res_list, key=lambda x: x['changesPercentage'], reverse=False)[:5]
|
|
|
|
return {'gainers': top_5_gainers, 'losers': top_5_losers}
|
|
|
|
|
|
try:
|
|
con = sqlite3.connect('stocks.db')
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks")
|
|
symbols = [row[0] for row in cursor.fetchall()]
|
|
#Filter out tickers
|
|
symbols = [symbol for symbol in symbols if symbol != "STEC"]
|
|
|
|
data = asyncio.run(get_historical_data())
|
|
with open(f"json/mini-plots-index/data.json", 'w') as file:
|
|
ujson.dump(data, file)
|
|
|
|
data = asyncio.run(get_gainer_loser_active_stocks())
|
|
with open(f"json/market-movers/data.json", 'w') as file:
|
|
ujson.dump(data, file)
|
|
|
|
data = asyncio.run(get_pre_post_market_movers(symbols))
|
|
with open(f"json/market-movers/pre-post-data.json", 'w') as file:
|
|
ujson.dump(data, file)
|
|
|
|
|
|
con.close()
|
|
except Exception as e:
|
|
print(e) |