316 lines
13 KiB
Python
Executable File
316 lines
13 KiB
Python
Executable File
from benzinga import financial_data
|
|
import requests
|
|
from datetime import datetime, timedelta, date
|
|
from collections import defaultdict
|
|
import numpy as np
|
|
import pandas as pd
|
|
from scipy.stats import norm
|
|
import time
|
|
import sqlite3
|
|
import ujson
|
|
import math
|
|
import statistics
|
|
import os
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
api_key = os.getenv('BENZINGA_API_KEY')
|
|
|
|
fin = financial_data.Benzinga(api_key)
|
|
|
|
|
|
query_template = """
|
|
SELECT date,close
|
|
FROM "{ticker}"
|
|
WHERE date BETWEEN ? AND ?
|
|
"""
|
|
end_date = date.today()
|
|
start_date_12m = end_date - timedelta(days=365) # end_date is today
|
|
|
|
|
|
# Define a function to remove duplicates based on a key
|
|
def remove_duplicates(data, key):
|
|
seen = set()
|
|
new_data = []
|
|
for item in data:
|
|
if item[key] not in seen:
|
|
seen.add(item[key])
|
|
new_data.append(item)
|
|
return new_data
|
|
|
|
|
|
|
|
def get_summary(res_list):
|
|
# Get the latest summary of ratings from the last 12 months
|
|
end_date = date.today()
|
|
|
|
|
|
|
|
# Filter the data for the last 12 months
|
|
filtered_data = [item for item in res_list if start_date_12m <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
|
|
|
|
# Initialize dictionary to store the latest price target for each analyst
|
|
latest_pt_current = defaultdict(list)
|
|
|
|
# Iterate through the filtered data to collect pt_current for each analyst
|
|
for item in filtered_data:
|
|
if 'adjusted_pt_current' in item and item['adjusted_pt_current']:
|
|
analyst_name = item['analyst_name']
|
|
try:
|
|
pt_current_value = float(item['adjusted_pt_current'])
|
|
# Collect all pt_current values for each analyst
|
|
latest_pt_current[analyst_name].append(pt_current_value)
|
|
except (ValueError, TypeError):
|
|
print(f"Invalid pt_current value for analyst '{analyst_name}': {item['adjusted_pt_current']}")
|
|
|
|
# Compute statistics for price targets
|
|
pt_current_values = [val for sublist in latest_pt_current.values() for val in sublist]
|
|
#remove outliers to keep high and low price target reasonable
|
|
q1, q3 = np.percentile(pt_current_values, [25, 75])
|
|
iqr = q3 - q1
|
|
pt_current_values = [x for x in pt_current_values if (q1 - 1.5 * iqr) <= x <= (q3 + 1.5 * iqr)]
|
|
|
|
# Compute different price target metrics if there are values, otherwise set to 0
|
|
if pt_current_values:
|
|
median_pt_current = statistics.median(pt_current_values)
|
|
avg_pt_current = statistics.mean(pt_current_values)
|
|
low_pt_current = min(pt_current_values)
|
|
high_pt_current = max(pt_current_values)
|
|
else:
|
|
median_pt_current = avg_pt_current = low_pt_current = high_pt_current = 0
|
|
|
|
# Initialize recommendation tracking
|
|
rating_hierarchy = {'Strong Sell': 0, 'Sell': 1, 'Hold': 2, 'Buy': 3, 'Strong Buy': 4}
|
|
|
|
# Track monthly recommendations
|
|
monthly_recommendations = {}
|
|
|
|
# Iterate through the filtered data to track monthly recommendations
|
|
for item in filtered_data:
|
|
# Extract month from the date
|
|
item_date = datetime.strptime(item['date'], '%Y-%m-%d')
|
|
month_key = item_date.strftime('%Y-%m-01')
|
|
|
|
# Initialize month's recommendation counts if not exists
|
|
if month_key not in monthly_recommendations:
|
|
monthly_recommendations[month_key] = {
|
|
'Strong Sell': 0,
|
|
'Sell': 0,
|
|
'Hold': 0,
|
|
'Buy': 0,
|
|
'Strong Buy': 0
|
|
}
|
|
|
|
# Check and increment recommendation count for the month
|
|
if 'rating_current' in item and item['rating_current'] in rating_hierarchy:
|
|
monthly_recommendations[month_key][item['rating_current']] += 1
|
|
|
|
# Convert monthly recommendations to a sorted list
|
|
recommendation_list = []
|
|
for month in sorted(monthly_recommendations.keys()):
|
|
month_data = monthly_recommendations[month]
|
|
recommendation_list.append({
|
|
'date': month,
|
|
'Strong Sell': month_data['Strong Sell'],
|
|
'Sell': month_data['Sell'],
|
|
'Hold': month_data['Hold'],
|
|
'Buy': month_data['Buy'],
|
|
'Strong Buy': month_data['Strong Buy']
|
|
})
|
|
|
|
# Compute consensus ratings (similar to previous implementation)
|
|
consensus_ratings = defaultdict(str)
|
|
for item in filtered_data:
|
|
if 'rating_current' in item and item['rating_current'] and 'analyst_name' in item and item['analyst_name']:
|
|
try:
|
|
analyst_name = item['analyst_name']
|
|
current_rating = item['rating_current']
|
|
if current_rating in rating_hierarchy:
|
|
consensus_ratings[analyst_name] = current_rating
|
|
except:
|
|
pass
|
|
|
|
# Compute the consensus rating based on the most frequent rating among analysts
|
|
consensus_rating_counts = defaultdict(int)
|
|
for rating in consensus_ratings.values():
|
|
consensus_rating_counts[rating] += 1
|
|
consensus_rating = max(consensus_rating_counts, key=consensus_rating_counts.get)
|
|
|
|
# Sum up all Buy, Sell, Hold for the progress bar in sveltekit
|
|
data_dict = dict(consensus_rating_counts)
|
|
buy_total = data_dict.get('Strong Buy', 0) + data_dict.get('Buy', 0)
|
|
sell_total = data_dict.get('Strong Sell', 0) + data_dict.get('Sell', 0)
|
|
hold_total = data_dict.get('Hold', 0)
|
|
|
|
# Count unique analysts
|
|
unique_analyst_names = set()
|
|
numOfAnalyst = 0
|
|
for item in filtered_data:
|
|
if item['analyst_name'] not in unique_analyst_names:
|
|
unique_analyst_names.add(item['analyst_name'])
|
|
numOfAnalyst += 1
|
|
|
|
# Update stats dictionary with new keys including recommendationList
|
|
stats = {
|
|
'numOfAnalyst': numOfAnalyst,
|
|
'consensusRating': consensus_rating,
|
|
'medianPriceTarget': round(median_pt_current, 2),
|
|
'avgPriceTarget': round(avg_pt_current, 2),
|
|
'lowPriceTarget': round(low_pt_current, 2),
|
|
'highPriceTarget': round(high_pt_current, 2),
|
|
'recommendationList': recommendation_list
|
|
}
|
|
|
|
categorical_ratings = {'Buy': buy_total, 'Sell': sell_total, 'Hold': hold_total}
|
|
|
|
res = {**stats, **categorical_ratings}
|
|
return res
|
|
|
|
def run(chunk,analyst_list, con):
|
|
start_date = datetime(2015,1,1)
|
|
end_date_str = end_date.strftime('%Y-%m-%d')
|
|
start_date_str = start_date.strftime('%Y-%m-%d')
|
|
|
|
|
|
company_tickers = ','.join(chunk)
|
|
res_list = []
|
|
for page in range(0, 500):
|
|
try:
|
|
data = fin.ratings(company_tickers=company_tickers, page=page, pagesize=1000, date_from=start_date_str, date_to=end_date_str)
|
|
data = ujson.loads(fin.output(data))['ratings']
|
|
res_list += data
|
|
except:
|
|
break
|
|
|
|
res_list = [item for item in res_list if item.get('analyst_name')]
|
|
#print(res_list[-15])
|
|
|
|
for ticker in chunk:
|
|
try:
|
|
ticker_filtered_data = [item for item in res_list if item['ticker'] == ticker]
|
|
if len(ticker_filtered_data) != 0:
|
|
for item in ticker_filtered_data:
|
|
if item['rating_current'] == 'Strong Sell' or item['rating_current'] == 'Strong Buy':
|
|
pass
|
|
elif item['rating_current'] == 'Neutral':
|
|
item['rating_current'] = 'Hold'
|
|
elif item['rating_current'] == 'Equal-Weight' or item['rating_current'] == 'Sector Weight' or item['rating_current'] == 'Sector Perform':
|
|
item['rating_current'] = 'Hold'
|
|
elif item['rating_current'] == 'In-Line':
|
|
item['rating_current'] = 'Hold'
|
|
elif item['rating_current'] == 'Outperform' and item['action_company'] == 'Downgrades':
|
|
item['rating_current'] = 'Hold'
|
|
elif item['rating_current'] == 'Negative':
|
|
item['rating_current'] = 'Sell'
|
|
elif (item['rating_current'] == 'Outperform' or item['rating_current'] == 'Overweight') and (item['action_company'] == 'Reiterates' or item['action_company'] == 'Initiates Coverage On'):
|
|
item['rating_current'] = 'Buy'
|
|
item['action_comapny'] = 'Initiates'
|
|
elif item['rating_current'] == 'Market Outperform' and (item['action_company'] == 'Maintains' or item['action_company'] == 'Reiterates'):
|
|
item['rating_current'] = 'Buy'
|
|
elif item['rating_current'] == 'Outperform' and (item['action_company'] == 'Maintains' or item['action_pt'] == 'Announces' or item['action_company'] == 'Upgrades'):
|
|
item['rating_current'] = 'Buy'
|
|
elif item['rating_current'] == 'Buy' and (item['action_company'] == 'Raises' or item['action_pt'] == 'Raises'):
|
|
item['rating_current'] = 'Strong Buy'
|
|
elif item['rating_current'] == 'Overweight' and (item['action_company'] == 'Maintains' or item['action_company'] == 'Upgrades' or item['action_company'] == 'Reiterates' or item['action_pt'] == 'Raises'):
|
|
item['rating_current'] = 'Buy'
|
|
elif item['rating_current'] == 'Positive' or item['rating_current'] == 'Sector Outperform':
|
|
item['rating_current'] = 'Buy'
|
|
elif item['rating_current'] == 'Underperform' or item['rating_current'] == 'Underweight':
|
|
item['rating_current'] = 'Sell'
|
|
elif item['rating_current'] == 'Reduce' and (item['action_company'] == 'Downgrades' or item['action_pt'] == 'Lowers'):
|
|
item['rating_current'] = 'Sell'
|
|
elif item['rating_current'] == 'Sell' and item['action_pt'] == 'Announces':
|
|
item['rating_current'] = 'Strong Sell'
|
|
elif item['rating_current'] == 'Market Perform':
|
|
item['rating_current'] = 'Hold'
|
|
elif item['rating_prior'] == 'Outperform' and item['action_company'] == 'Downgrades':
|
|
item['rating_current'] = 'Hold'
|
|
elif item['rating_current'] == 'Peer Perform' and item['rating_prior'] == 'Peer Perfrom':
|
|
item['rating_current'] = 'Hold'
|
|
elif item['rating_current'] == 'Peer Perform' and item['action_pt'] == 'Announces':
|
|
item['rating_current'] = 'Hold'
|
|
item['action_comapny'] = 'Initiates'
|
|
|
|
summary = get_summary(ticker_filtered_data)
|
|
try:
|
|
#Add historical price for the last 12 month
|
|
query = query_template.format(ticker=ticker)
|
|
df_12m = pd.read_sql_query(query, con, params=(start_date_12m, end_date)).round(2)
|
|
df_12m['date'] = pd.to_datetime(df_12m['date'])
|
|
|
|
df_12m_last_per_month = df_12m.groupby(df_12m['date'].dt.to_period('M')).tail(1)
|
|
past_price_list = [{"date": row['date'].strftime('%Y-%m-%d'), "close": row['close']} for _, row in df_12m_last_per_month.iterrows()]
|
|
summary["pastPriceList"] = past_price_list
|
|
except:
|
|
summary["pastPriceList"] = []
|
|
|
|
|
|
#get ratings of each analyst
|
|
with open(f"json/analyst/summary/{ticker}.json", 'w') as file:
|
|
ujson.dump(summary, file)
|
|
|
|
for item1 in ticker_filtered_data:
|
|
#item1['analystId'] = ''
|
|
#item1['analystScore'] = 0
|
|
#item1['adjusted_pt_current'] = 0
|
|
#item1['adjusted_pt_prior'] = 0
|
|
for item2 in analyst_stats_list:
|
|
if item1['analyst'] == item2['companyName'] and item1['analyst_name'] == item2['analystName']:
|
|
item1['analystId'] = item2['analystId']
|
|
item1['analystScore'] = item2['analystScore']
|
|
break
|
|
elif item1['analyst_name'] == item2['analystName']:
|
|
item1['analystId'] = item2['analystId']
|
|
item1['analystScore'] = item2['analystScore']
|
|
break
|
|
#Bug: Benzinga does not give me reliable all analyst names and hence score.
|
|
# Compute in those cases the analyst score separately for each analyst
|
|
|
|
'''
|
|
if 'analystScore' not in item1: #or item1['analystScore'] == 0:
|
|
one_sample_list = get_one_sample_analyst_data(item1['analyst_name'], item1['analyst'])
|
|
item1['analystId'] = one_sample_list[0]['id']
|
|
item1['analystScore'] = one_sample_list[0]['analystScore']
|
|
'''
|
|
|
|
desired_keys = ['date', 'action_company', 'rating_current', 'adjusted_pt_current', 'adjusted_pt_prior', 'analystId', 'analystScore', 'analyst', 'analyst_name']
|
|
|
|
ticker_filtered_data = [
|
|
{key: item[key] if key in item else None for key in desired_keys}
|
|
for item in ticker_filtered_data
|
|
]
|
|
|
|
|
|
#print(ticker_filtered_data[0])
|
|
#time.sleep(10000)
|
|
with open(f"json/analyst/history/{ticker}.json", 'w') as file:
|
|
ujson.dump(ticker_filtered_data, file)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
|
|
|
|
try:
|
|
con = sqlite3.connect('stocks.db')
|
|
stock_cursor = con.cursor()
|
|
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
|
stock_symbols =[row[0] for row in stock_cursor.fetchall()]
|
|
|
|
|
|
#Save all analyst data in raw form for the next step
|
|
with open(f"json/analyst/all-analyst-data.json", 'r') as file:
|
|
analyst_stats_list = ujson.load(file)
|
|
|
|
chunk_size = len(stock_symbols) // 100 # Divide the list into N chunks
|
|
|
|
chunks = [stock_symbols[i:i + chunk_size] for i in range(0, len(stock_symbols), chunk_size)]
|
|
#chunks = [['NVDA']]
|
|
for chunk in chunks:
|
|
run(chunk, analyst_stats_list, con)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
finally:
|
|
con.close() |