136 lines
5.6 KiB
Python
Executable File
136 lines
5.6 KiB
Python
Executable File
import yfinance as yf
|
|
import pandas as pd
|
|
from datetime import datetime, timedelta
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
import numpy as np
|
|
from xgboost import XGBClassifier
|
|
from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, accuracy_score
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import MinMaxScaler, StandardScaler
|
|
from keras.models import Sequential
|
|
from keras.layers import LSTM, Dense, Conv1D, Bidirectional, Attention,Dropout, BatchNormalization
|
|
from keras.optimizers import Adam
|
|
from keras.callbacks import EarlyStopping, ModelCheckpoint
|
|
from keras.models import load_model
|
|
from sklearn.feature_selection import SelectKBest, f_classif
|
|
from tensorflow.keras.backend import clear_session
|
|
from keras import regularizers
|
|
|
|
from tqdm import tqdm
|
|
from collections import defaultdict
|
|
import asyncio
|
|
import aiohttp
|
|
import aiofiles
|
|
import pickle
|
|
import time
|
|
|
|
#Based on the paper: https://arxiv.org/pdf/1603.00751
|
|
|
|
class FundamentalPredictor:
|
|
def __init__(self):
|
|
self.model = self.build_model() #RandomForestClassifier(n_estimators=1000, max_depth = 20, min_samples_split=10, random_state=42, n_jobs=10)
|
|
self.scaler = MinMaxScaler()
|
|
|
|
def build_model(self):
|
|
clear_session()
|
|
model = Sequential()
|
|
|
|
model.add(Conv1D(filters=64, kernel_size=3, padding='same', activation='relu', input_shape=(None, 1)))
|
|
|
|
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=(None, 1)))
|
|
|
|
# First LSTM layer with dropout and batch normalization
|
|
model.add(LSTM(256, return_sequences=True, kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dropout(0.5))
|
|
model.add(BatchNormalization())
|
|
|
|
|
|
# Second LSTM layer with dropout and batch normalization
|
|
model.add(LSTM(256, return_sequences=True, kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dropout(0.5))
|
|
model.add(BatchNormalization())
|
|
|
|
# Third LSTM layer with dropout and batch normalization
|
|
model.add(LSTM(128, kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dropout(0.5))
|
|
model.add(BatchNormalization())
|
|
|
|
model.add(Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dropout(0.2))
|
|
model.add(BatchNormalization())
|
|
|
|
# Dense layer with sigmoid activation for binary classification
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
|
|
|
|
# Adam optimizer with a learning rate of 0.001
|
|
optimizer = Adam(learning_rate=0.01)
|
|
|
|
# Compile model with binary crossentropy loss and accuracy metric
|
|
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
|
|
|
|
return model
|
|
|
|
def preprocess_data(self, X):
|
|
#X = X.applymap(lambda x: 9999 if x == 0 else x) # Replace 0 with 9999 as suggested in the paper
|
|
X = np.where(np.isinf(X), np.nan, X)
|
|
X = np.nan_to_num(X)
|
|
X = self.scaler.fit_transform(X)
|
|
return X
|
|
|
|
def reshape_for_lstm(self, X):
|
|
return X.reshape((X.shape[0], X.shape[1], 1))
|
|
|
|
def train_model(self, X_train, y_train):
|
|
X_train = self.preprocess_data(X_train)
|
|
X_train = self.reshape_for_lstm(X_train)
|
|
|
|
checkpoint = ModelCheckpoint(f'ml_models/fundamental_weights/weights.keras', save_best_only=True, monitor='val_loss', mode='min')
|
|
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
|
|
|
|
self.model.fit(X_train, y_train, epochs=250, batch_size=32, validation_split=0.2, callbacks=[checkpoint, early_stopping])
|
|
self.model.save(f'ml_models/fundamental_weights/weights.keras')
|
|
|
|
def evaluate_model(self, X_test, y_test):
|
|
X_test = self.preprocess_data(X_test)
|
|
X_test = self.reshape_for_lstm(X_test)
|
|
|
|
self.model = self.build_model()
|
|
self.model = load_model(f'ml_models/fundamental_weights/weights.keras')
|
|
|
|
test_predictions = self.model.predict(X_test).flatten()
|
|
|
|
test_predictions[test_predictions >= 0.5] = 1
|
|
test_predictions[test_predictions < 0.5] = 0
|
|
|
|
test_precision = precision_score(y_test, test_predictions)
|
|
test_accuracy = accuracy_score(y_test, test_predictions)
|
|
|
|
print("Test Set Metrics:")
|
|
print(f"Precision: {round(test_precision * 100)}%")
|
|
print(f"Accuracy: {round(test_accuracy * 100)}%")
|
|
|
|
next_value_prediction = 1 if test_predictions[-1] >= 0.5 else 0
|
|
return {'accuracy': round(test_accuracy*100), 'precision': round(test_precision*100), 'sentiment': 'Bullish' if next_value_prediction == 1 else 'Bearish'}, test_predictions
|
|
|
|
def feature_selection(self, X_train, y_train,k=8):
|
|
|
|
selector = SelectKBest(score_func=f_classif, k=8)
|
|
selector.fit(X_train, y_train)
|
|
|
|
selector.transform(X_train)
|
|
selected_features = [col for i, col in enumerate(X_train.columns) if selector.get_support()[i]]
|
|
|
|
return selected_features
|
|
|
|
# Calculate the variance of each feature with respect to the target
|
|
'''
|
|
variances = {}
|
|
for col in X_train.columns:
|
|
grouped_variance = X_train.groupby(y_train)[col].var().mean()
|
|
variances[col] = grouped_variance
|
|
|
|
# Sort features by variance and select top k features
|
|
sorted_features = sorted(variances, key=variances.get, reverse=True)[:k]
|
|
return sorted_features
|
|
''' |