backend/app/cron_dark_pool_level.py
2024-12-29 21:55:00 +01:00

150 lines
5.3 KiB
Python

import os
import pandas as pd
import numpy as np
import orjson
from dotenv import load_dotenv
import sqlite3
from datetime import datetime, timedelta
import pytz
from typing import List, Dict
import sqlite3
from tqdm import tqdm
def save_json(data, symbol):
def convert_numpy(obj):
if isinstance(obj, np.generic):
return obj.item() # Convert numpy scalar to Python scalar
raise TypeError(f"Type is not JSON serializable: {type(obj)}")
directory = "json/dark-pool/price-level"
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
with open(f"{directory}/{symbol}.json", 'wb') as file: # Use binary mode for orjson
file.write(orjson.dumps(data, default=convert_numpy))
# Function to get the last 7 weekdays
def get_last_7_weekdays():
today = datetime.today()
weekdays = []
# Start from today and go back until we have 7 weekdays
while len(weekdays) < 7:
if today.weekday() < 5: # Monday to Friday are weekdays (0-4)
weekdays.append(today)
today -= timedelta(days=1)
weekdays = [item.strftime("%Y-%m-%d") for item in weekdays]
return weekdays
def analyze_dark_pool_levels(trades: List[Dict],
size_threshold: float = 0.8,
price_grouping: float = 1.0) -> Dict:
if not trades or not isinstance(trades, list):
return {}
try:
df = pd.DataFrame(trades)
if df.empty:
return {}
# Ensure necessary columns exist
if 'premium' not in df or 'price' not in df or 'size' not in df:
return {}
# Convert premium strings to float values
df['premium'] = df['premium'].apply(lambda x: float(str(x).replace(',', '')))
df['price_level'] = (df['price'] / price_grouping).round(1) * price_grouping
size_by_price = df.groupby('price_level').agg({
'size': 'sum',
'premium': 'sum'
}).reset_index()
min_size = size_by_price['size'].quantile(size_threshold)
significant_levels = size_by_price[size_by_price['size'] >= min_size]
significant_levels = significant_levels.sort_values('size', ascending=False)
current_price = df['price'].iloc[-1]
support_levels = significant_levels[significant_levels['price_level'] < current_price].to_dict('records')
resistance_levels = significant_levels[significant_levels['price_level'] > current_price].to_dict('records')
metrics = {
'avgTradeSize': round(df['size'].mean(), 2),
'totalPrem': round(df['premium'].sum(), 2),
'avgPremTrade': round(df['premium'].mean(), 2)
}
price_level = support_levels + resistance_levels
price_level = sorted(price_level, key=lambda x: float(x['price_level']))
return {
'price_level': price_level,
'metrics': metrics,
}
except Exception as e:
print(f"Error analyzing dark pool levels: {e}")
return {}
def run():
con = sqlite3.connect('stocks.db')
etf_con = sqlite3.connect('etf.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
stocks_symbols = [row[0] for row in cursor.fetchall()]
etf_cursor = etf_con.cursor()
etf_cursor.execute("PRAGMA journal_mode = wal")
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
con.close()
etf_con.close()
total_symbols = stocks_symbols+ etf_symbols
total_symbols = ['CCLD']
data = []
weekdays = get_last_7_weekdays()
for date in weekdays:
try:
with open(f"json/dark-pool/historical-flow/{date}.json", "r") as file:
raw_data = orjson.loads(file.read())
data +=raw_data
except:
pass
for symbol in tqdm(total_symbols):
try:
res_list = [item for item in data if isinstance(item, dict) and item['ticker'] == symbol]
dark_pool_levels = analyze_dark_pool_levels(
trades=res_list,
size_threshold=0.8, # Look for levels with volume in top 20%
price_grouping=1.0 # Group prices within $1.00
)
if dark_pool_levels.get('price_level'): # Ensure there are valid levels
top_5_elements = [
{k: v for k, v in item.items() if k not in ['ticker', 'sector', 'assetType']}
for item in sorted(res_list, key=lambda x: float(x.get('premium', 0)), reverse=True)[:5]
]
# Add rank to each item
for rank, item in enumerate(top_5_elements, 1):
item['rank'] = rank
data_to_save = {
'hottestTrades': top_5_elements,
'priceLevel': dark_pool_levels['price_level'],
'metrics': dark_pool_levels['metrics']
}
save_json(data_to_save, symbol)
except Exception as e:
print(f"Error processing {symbol}: {e}")
if __name__ == "__main__":
run()