106 lines
3.4 KiB
Python
106 lines
3.4 KiB
Python
import aiohttp
|
|
import ujson
|
|
import sqlite3
|
|
import asyncio
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
import orjson
|
|
|
|
async def save_as_json(symbol, data):
|
|
with open(f"json/dividends/companies/{symbol}.json", 'w') as file:
|
|
ujson.dump(data, file)
|
|
|
|
|
|
async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
|
|
try:
|
|
if ticker in etf_symbols:
|
|
table_name = 'etfs'
|
|
column_name = 'etf_dividend'
|
|
else:
|
|
table_name = 'stocks'
|
|
column_name = 'stock_dividend'
|
|
|
|
query_template = f"""
|
|
SELECT
|
|
{column_name}, quote
|
|
FROM
|
|
{table_name}
|
|
WHERE
|
|
symbol = ?
|
|
"""
|
|
|
|
df = pd.read_sql_query(query_template, etf_con if table_name == 'etfs' else con, params=(ticker,))
|
|
|
|
dividend_data = orjson.loads(df[column_name].iloc[0])
|
|
|
|
res = dividend_data.get('historical', [])
|
|
|
|
filtered_res = [item for item in res if item['recordDate'] != '' and item['paymentDate'] != '']
|
|
|
|
# Calculate payout frequency based on dividends recorded in 2023
|
|
payout_frequency = sum(1 for item in filtered_res if '2023' in item['recordDate'])
|
|
quote_data = orjson.loads(df['quote'].iloc[0])[0]
|
|
eps = quote_data.get('eps')
|
|
current_price = quote_data.get('price')
|
|
|
|
amount = filtered_res[0]['adjDividend'] if filtered_res else 0
|
|
annual_dividend = round(amount * payout_frequency, 2)
|
|
dividend_yield = round((annual_dividend / current_price) * 100, 2) if current_price else None
|
|
|
|
payout_ratio = round((1 - (eps - annual_dividend) / eps) * 100, 2) if eps else None
|
|
|
|
previous_index = next((i for i, item in enumerate(filtered_res) if '2023' in item['recordDate']), None)
|
|
|
|
# Calculate previousAnnualDividend and dividendGrowth
|
|
previous_annual_dividend = (filtered_res[previous_index]['adjDividend'] * payout_frequency) if previous_index is not None else 0
|
|
dividend_growth = round(((annual_dividend - previous_annual_dividend) / previous_annual_dividend) * 100, 2) if previous_annual_dividend else None
|
|
|
|
|
|
return {
|
|
'payoutFrequency': payout_frequency,
|
|
'annualDividend': annual_dividend,
|
|
'dividendYield': dividend_yield,
|
|
'payoutRatio': payout_ratio,
|
|
'dividendGrowth': dividend_growth,
|
|
'history': filtered_res,
|
|
}
|
|
|
|
except:
|
|
res = {}
|
|
|
|
return res
|
|
|
|
|
|
async def run():
|
|
|
|
con = sqlite3.connect('stocks.db')
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
|
stock_symbols = [row[0] for row in cursor.fetchall()]
|
|
|
|
etf_con = sqlite3.connect('etf.db')
|
|
etf_cursor = etf_con.cursor()
|
|
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
|
|
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
|
|
|
|
total_symbols = stock_symbols + etf_symbols
|
|
|
|
for ticker in tqdm(total_symbols):
|
|
res = await get_data(ticker, con, etf_con, stock_symbols, etf_symbols)
|
|
try:
|
|
if len(res.get('history')) > 0 and res.get('dividendGrowth') != None:
|
|
await save_as_json(ticker, res)
|
|
except:
|
|
pass
|
|
|
|
|
|
con.close()
|
|
etf_con.close()
|
|
|
|
|
|
try:
|
|
asyncio.run(run())
|
|
except Exception as e:
|
|
print(e)
|