99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
import ujson
|
|
import sqlite3
|
|
import asyncio
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
from datetime import datetime
|
|
import yfinance as yf
|
|
import time
|
|
|
|
|
|
async def save_as_json(symbol, data):
|
|
with open(f"json/share-statistics/{symbol}.json", 'w') as file:
|
|
ujson.dump(data, file)
|
|
|
|
|
|
query_template = f"""
|
|
SELECT
|
|
historicalShares
|
|
FROM
|
|
stocks
|
|
WHERE
|
|
symbol = ?
|
|
"""
|
|
|
|
|
|
def filter_data_quarterly(data):
|
|
# Generate a range of quarter-end dates from the start to the end date
|
|
start_date = data[0]['date']
|
|
end_date = datetime.today().strftime('%Y-%m-%d')
|
|
quarter_ends = pd.date_range(start=start_date, end=end_date, freq='QE').strftime('%Y-%m-%d').tolist()
|
|
|
|
# Filter data to keep only entries with dates matching quarter-end dates
|
|
filtered_data = [entry for entry in data if entry['date'] in quarter_ends]
|
|
|
|
return filtered_data
|
|
|
|
def get_short_data(ticker, outstanding_shares, float_shares):
|
|
try:
|
|
data_dict = yf.Ticker(ticker).info
|
|
short_outstanding_percent = round((data_dict['sharesShort']/outstanding_shares)*100,2)
|
|
short_float_percent = round((data_dict['sharesShort']/float_shares)*100,2)
|
|
return {'sharesShort': data_dict['sharesShort'], 'shortRatio': data_dict['shortRatio'], 'sharesShortPriorMonth': data_dict['sharesShortPriorMonth'], 'shortOutStandingPercent': short_outstanding_percent, 'shortFloatPercent': short_float_percent}
|
|
except:
|
|
return {'sharesShort': '-', 'shortRatio': '-', 'sharesShortPriorMonth': '-', 'shortOutStandingPercent': '-', 'shortFloatPercent': '-'}
|
|
|
|
|
|
async def get_data(ticker, con):
|
|
|
|
try:
|
|
df = pd.read_sql_query(query_template, con, params=(ticker,))
|
|
shareholder_statistics = ujson.loads(df.to_dict()['historicalShares'][0])
|
|
# Keys to keep
|
|
keys_to_keep = ["date","floatShares", "outstandingShares"]
|
|
|
|
# Create new list with only the specified keys and convert floatShares and outstandingShares to integers
|
|
shareholder_statistics = [
|
|
{key: int(d[key]) if key in ["floatShares", "outstandingShares"] else d[key]
|
|
for key in keys_to_keep}
|
|
for d in shareholder_statistics
|
|
]
|
|
|
|
shareholder_statistics = sorted(shareholder_statistics, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'), reverse=False)
|
|
|
|
latest_outstanding_shares = shareholder_statistics[-1]['outstandingShares']
|
|
latest_float_shares = shareholder_statistics[-1]['floatShares']
|
|
|
|
# Filter out only quarter-end dates
|
|
historical_shares = filter_data_quarterly(shareholder_statistics)
|
|
|
|
short_data = get_short_data(ticker, latest_outstanding_shares, latest_float_shares)
|
|
res = {**short_data, 'latestOutstandingShares': latest_outstanding_shares, 'latestFloatShares': latest_float_shares,'historicalShares': historical_shares}
|
|
except Exception as e:
|
|
#print(e)
|
|
res = {}
|
|
|
|
return res
|
|
|
|
|
|
async def run():
|
|
|
|
con = sqlite3.connect('stocks.db')
|
|
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks")
|
|
stock_symbols = [row[0] for row in cursor.fetchall()]
|
|
|
|
for ticker in tqdm(stock_symbols):
|
|
data_dict = await get_data(ticker, con)
|
|
if data_dict.keys():
|
|
await save_as_json(ticker, data_dict)
|
|
|
|
con.close()
|
|
|
|
try:
|
|
asyncio.run(run())
|
|
except Exception as e:
|
|
print(e)
|