163 lines
6.2 KiB
Python
163 lines
6.2 KiB
Python
import yfinance as yf
|
|
import pandas as pd
|
|
from datetime import datetime, timedelta
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
import numpy as np
|
|
from xgboost import XGBClassifier
|
|
from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, accuracy_score
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import MinMaxScaler, StandardScaler
|
|
from keras.models import Sequential, Model
|
|
from keras.layers import Input, Multiply, Reshape, LSTM, Dense, Conv1D, Dropout, BatchNormalization, GlobalAveragePooling1D, MaxPooling1D, Bidirectional
|
|
from keras.optimizers import Adam
|
|
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
|
|
from keras.models import load_model
|
|
from sklearn.feature_selection import SelectKBest, f_classif
|
|
from tensorflow.keras.backend import clear_session
|
|
from keras import regularizers
|
|
from keras.layers import Layer
|
|
|
|
|
|
from tqdm import tqdm
|
|
from collections import defaultdict
|
|
import asyncio
|
|
import aiohttp
|
|
import aiofiles
|
|
import pickle
|
|
import time
|
|
|
|
# Based on the paper: https://arxiv.org/pdf/1603.00751
|
|
|
|
|
|
class ScorePredictor:
|
|
def __init__(self):
|
|
self.scaler = MinMaxScaler()
|
|
self.model = self.build_model()
|
|
|
|
def build_model(self):
|
|
clear_session()
|
|
|
|
# Input layer
|
|
inputs = Input(shape=(8,))
|
|
|
|
# First dense layer
|
|
x = Dense(512, activation='relu')(inputs)
|
|
x = Dropout(0.5)(x)
|
|
x = BatchNormalization()(x)
|
|
|
|
# Additional dense layers
|
|
for units in [256,128]:
|
|
x = Dense(units, activation='relu')(x)
|
|
x = Dropout(0.5)(x)
|
|
x = BatchNormalization()(x)
|
|
|
|
# Reshape for attention mechanism
|
|
x = Reshape((128, 1))(x)
|
|
|
|
# Attention mechanism
|
|
attention = Dense(128, activation='relu')(x)
|
|
attention = Dense(1, activation='softmax')(attention)
|
|
|
|
# Apply attention
|
|
x = Multiply()([x, attention])
|
|
|
|
# Global average pooling
|
|
x = GlobalAveragePooling1D()(x)
|
|
|
|
# Output layer (for class probabilities)
|
|
outputs = Dense(2, activation='softmax')(x) # Two neurons for class probabilities with softmax
|
|
|
|
# Create the model
|
|
model = Model(inputs=inputs, outputs=outputs)
|
|
|
|
# Optimizer with a lower learning rate
|
|
optimizer = Adam(learning_rate=0.001, clipnorm=1.0)
|
|
|
|
# Compile the model
|
|
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
|
|
|
return model
|
|
|
|
def preprocess_data(self, X):
|
|
# X = X.applymap(lambda x: 9999 if x == 0 else x) # Replace 0 with 9999 as suggested in the paper
|
|
X = np.where(np.isinf(X), np.nan, X)
|
|
X = np.nan_to_num(X)
|
|
X = self.scaler.fit_transform(X)
|
|
return X
|
|
|
|
def reshape_for_lstm(self, X):
|
|
return X.reshape((X.shape[0], X.shape[1], 1))
|
|
|
|
def train_model(self, X_train, y_train):
|
|
X_train = self.preprocess_data(X_train)
|
|
#X_train = self.reshape_for_lstm(X_train)
|
|
|
|
checkpoint = ModelCheckpoint('ml_models/weights/ai-score/weights.keras',
|
|
save_best_only=True, save_freq = 1,
|
|
monitor='val_loss', mode='min')
|
|
early_stopping = EarlyStopping(monitor='val_loss', patience=50, restore_best_weights=True)
|
|
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=30, min_lr=0.001)
|
|
|
|
self.model.fit(X_train, y_train, epochs=100_000, batch_size=32,
|
|
validation_split=0.1, callbacks=[checkpoint, early_stopping, reduce_lr])
|
|
self.model.save('ml_models/weights/ai-score/weights.keras')
|
|
|
|
def evaluate_model(self, X_test, y_test):
|
|
# Preprocess the test data
|
|
X_test = self.preprocess_data(X_test)
|
|
#X_test = self.reshape_for_lstm(X_test)
|
|
|
|
# Load the trained model
|
|
self.model = load_model('ml_models/weights/ai-score/weights.keras')
|
|
|
|
# Get the model's predictions
|
|
test_predictions = self.model.predict(X_test)
|
|
#print(test_predictions)
|
|
|
|
# Extract the probabilities for class 1 (index 1 in the softmax output)
|
|
class_1_probabilities = test_predictions[:, 1]
|
|
# Convert probabilities to binary predictions using a threshold of 0.5
|
|
binary_predictions = (class_1_probabilities >= 0.5).astype(int)
|
|
|
|
# Calculate precision and accuracy using binary predictions
|
|
test_precision = precision_score(y_test, binary_predictions)
|
|
test_accuracy = accuracy_score(y_test, binary_predictions)
|
|
|
|
print("Test Set Metrics:")
|
|
print(f"Precision: {round(test_precision * 100)}%")
|
|
print(f"Accuracy: {round(test_accuracy * 100)}%")
|
|
|
|
# Define thresholds and corresponding scores
|
|
thresholds = [0.8, 0.75, 0.7, 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.2]
|
|
scores = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
|
|
|
|
# Get the last prediction value (class 1 probability) for scoring
|
|
last_prediction_prob = class_1_probabilities[-1]
|
|
|
|
# Initialize score to 0 (or any default value)
|
|
score = 0
|
|
print(last_prediction_prob)
|
|
# Determine the score based on the last prediction probability
|
|
for threshold, value in zip(thresholds, scores):
|
|
if last_prediction_prob >= threshold:
|
|
score = value
|
|
break # Exit the loop once the score is determined
|
|
|
|
# Return the evaluation results
|
|
return {'accuracy': round(test_accuracy * 100),
|
|
'precision': round(test_precision * 100),
|
|
'score': score}
|
|
|
|
|
|
|
|
def feature_selection(self, X_train, y_train, k=100):
|
|
print('feature selection:')
|
|
print(X_train.shape, y_train.shape)
|
|
selector = SelectKBest(score_func=f_classif, k=k)
|
|
selector.fit(X_train, y_train)
|
|
|
|
selector.transform(X_train)
|
|
selected_features = [col for i, col in enumerate(X_train.columns) if selector.get_support()[i]]
|
|
|
|
return selected_features
|