272 lines
9.5 KiB
Python
272 lines
9.5 KiB
Python
import os
|
|
import pandas as pd
|
|
import orjson
|
|
from dotenv import load_dotenv
|
|
import sqlite3
|
|
from datetime import datetime, timedelta
|
|
from GetStartEndDate import GetStartEndDate
|
|
import asyncio
|
|
import aiohttp
|
|
import pytz
|
|
import requests # Add missing import
|
|
|
|
|
|
load_dotenv()
|
|
api_key = os.getenv('UNUSUAL_WHALES_API_KEY')
|
|
fmp_api_key = os.getenv('FMP_API_KEY')
|
|
headers = {
|
|
"Accept": "application/json, text/plain",
|
|
"Authorization": api_key
|
|
}
|
|
ny_tz = pytz.timezone('America/New_York')
|
|
|
|
|
|
def save_json(data):
|
|
directory = "json/market-flow"
|
|
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
|
|
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
|
|
file.write(orjson.dumps(data))
|
|
|
|
# Function to convert and match timestamps
|
|
def add_close_to_data(price_list, data):
|
|
for entry in data:
|
|
# Convert timestamp to New York time and desired format
|
|
timestamp = datetime.fromisoformat(entry['timestamp']).astimezone(ny_tz)
|
|
formatted_time = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
# Match with price_list
|
|
for price in price_list:
|
|
if price['date'] == formatted_time:
|
|
entry['close'] = price['close']
|
|
break # Match found, no need to continue searching
|
|
return data
|
|
|
|
def convert_timestamps(data_list):
|
|
ny_tz = pytz.timezone('America/New_York')
|
|
|
|
for item in data_list:
|
|
# Parse the timestamp and convert to NY timezone
|
|
dt = datetime.fromisoformat(item['timestamp'])
|
|
ny_time = dt.astimezone(ny_tz)
|
|
|
|
# Format in desired format
|
|
item['timestamp'] = ny_time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
return data_list
|
|
|
|
|
|
def safe_round(value):
|
|
"""Attempt to convert a value to float and round it. Return the original value if not possible."""
|
|
try:
|
|
return round(float(value), 2)
|
|
except (ValueError, TypeError):
|
|
return value
|
|
|
|
def calculate_neutral_premium(data_item):
|
|
"""Calculate the neutral premium for a data item."""
|
|
call_premium = float(data_item['call_premium'])
|
|
put_premium = float(data_item['put_premium'])
|
|
bearish_premium = float(data_item['bearish_premium'])
|
|
bullish_premium = float(data_item['bullish_premium'])
|
|
|
|
total_premiums = bearish_premium + bullish_premium
|
|
observed_premiums = call_premium + put_premium
|
|
neutral_premium = observed_premiums - total_premiums
|
|
|
|
return safe_round(neutral_premium)
|
|
|
|
def generate_time_intervals(start_time, end_time):
|
|
"""Generate 1-minute intervals from start_time to end_time."""
|
|
intervals = []
|
|
current_time = start_time
|
|
while current_time <= end_time:
|
|
intervals.append(current_time.strftime('%Y-%m-%d %H:%M:%S'))
|
|
current_time += timedelta(minutes=1)
|
|
return intervals
|
|
|
|
def get_sector_data():
|
|
try:
|
|
url = "https://api.unusualwhales.com/api/market/sector-etfs"
|
|
response = requests.get(url, headers=headers)
|
|
data = response.json().get('data', [])
|
|
res_list = []
|
|
processed_data = []
|
|
|
|
|
|
for item in data:
|
|
symbol = item['ticker']
|
|
|
|
bearish_premium = float(item['bearish_premium'])
|
|
bullish_premium = float(item['bullish_premium'])
|
|
neutral_premium = calculate_neutral_premium(item)
|
|
|
|
# Step 1: Replace 'full_name' with 'name' if needed
|
|
new_item = {
|
|
'name' if key == 'full_name' else key: safe_round(value)
|
|
for key, value in item.items()
|
|
if key != 'in_out_flow'
|
|
}
|
|
|
|
# Step 2: Replace 'name' values
|
|
if str(new_item.get('name')) == 'Consumer Staples':
|
|
new_item['name'] = 'Consumer Defensive'
|
|
elif str(new_item.get('name')) == 'Consumer Discretionary':
|
|
new_item['name'] = 'Consumer Cyclical'
|
|
elif str(new_item.get('name')) == 'Health Care':
|
|
new_item['name'] = 'Healthcare'
|
|
elif str(new_item.get('name')) == 'Financials':
|
|
new_item['name'] = 'Financial Services'
|
|
elif str(new_item.get('name')) == 'Materials':
|
|
new_item['name'] = 'Basic Materials'
|
|
|
|
new_item['premium_ratio'] = [
|
|
safe_round(bearish_premium),
|
|
neutral_premium,
|
|
safe_round(bullish_premium)
|
|
]
|
|
|
|
with open(f"json/quote/{symbol}.json") as file:
|
|
quote_data = orjson.loads(file.read())
|
|
new_item['price'] = round(quote_data.get('price', 0), 2)
|
|
new_item['changesPercentage'] = round(quote_data.get('changesPercentage', 0), 2)
|
|
|
|
#get prem tick data:
|
|
'''
|
|
if symbol != 'SPY':
|
|
prem_tick_history = get_etf_tide(symbol)
|
|
#if symbol == 'XLB':
|
|
# print(prem_tick_history[10])
|
|
|
|
new_item['premTickHistory'] = prem_tick_history
|
|
'''
|
|
|
|
processed_data.append(new_item)
|
|
|
|
return processed_data
|
|
except Exception as e:
|
|
print(e)
|
|
return []
|
|
|
|
async def get_spy_chart_data():
|
|
start_date_1d, end_date_1d = GetStartEndDate().run()
|
|
start_date = start_date_1d.strftime("%Y-%m-%d")
|
|
end_date = end_date_1d.strftime("%Y-%m-%d")
|
|
|
|
url = f"https://financialmodelingprep.com/api/v3/historical-chart/1min/SPY?from={start_date}&to={end_date}&apikey={fmp_api_key}"
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.get(url) as response:
|
|
if response.status == 200:
|
|
data = await response.json()
|
|
data = sorted(data, key=lambda x: x['date'])
|
|
return data
|
|
else:
|
|
raise Exception(f"Error fetching SPY chart data: {response.status}")
|
|
|
|
|
|
def get_market_tide():
|
|
|
|
# Fetch SPY chart data
|
|
price_list = asyncio.run(get_spy_chart_data())
|
|
|
|
# Fetch market tide data
|
|
querystring = {"interval_5m": "false"}
|
|
url = f"https://api.unusualwhales.com/api/market/market-tide"
|
|
response = requests.get(url, headers=headers, params=querystring)
|
|
if response.status_code == 200:
|
|
data = response.json().get('data', [])
|
|
else:
|
|
raise Exception(f"Error fetching market tide data: {response.status_code}")
|
|
|
|
# Combine SPY data and market tide data
|
|
data = add_close_to_data(price_list, data)
|
|
data = convert_timestamps(data)
|
|
print(data)
|
|
|
|
'''
|
|
with open(f"json/one-day-price/SPY.json") as file:
|
|
price_list = orjson.loads(file.read())
|
|
'''
|
|
|
|
return data
|
|
|
|
|
|
|
|
def get_top_sector_tickers():
|
|
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
|
|
sector_list = [
|
|
"Basic Materials",
|
|
"Communication Services",
|
|
"Consumer Cyclical",
|
|
"Consumer Defensive",
|
|
"Energy",
|
|
"Financial Services",
|
|
"Healthcare",
|
|
"Industrials",
|
|
"Real Estate",
|
|
"Technology",
|
|
"Utilities",
|
|
]
|
|
headers = {
|
|
"Accept": "application/json, text/plain",
|
|
"Authorization": api_key
|
|
}
|
|
url = "https://api.unusualwhales.com/api/screener/stocks"
|
|
|
|
res_list = {}
|
|
|
|
for sector in sector_list:
|
|
querystring = {
|
|
'order': 'net_premium',
|
|
'order_direction': 'desc',
|
|
'sectors[]': sector
|
|
}
|
|
|
|
response = requests.get(url, headers=headers, params=querystring)
|
|
data = response.json().get('data', [])
|
|
|
|
updated_data = []
|
|
for item in data[:10]:
|
|
try:
|
|
new_item = {key: safe_round(value) for key, value in item.items()}
|
|
with open(f"json/quote/{item['ticker']}.json") as file:
|
|
quote_data = orjson.loads(file.read())
|
|
new_item['name'] = quote_data['name']
|
|
new_item['price'] = round(float(quote_data['price']), 2)
|
|
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
|
|
|
|
new_item['ivRank'] = round(float(new_item['iv_rank']),2)
|
|
new_item['gexRatio'] = new_item['gex_ratio']
|
|
new_item['gexNetChange'] = new_item['gex_net_change']
|
|
new_item['netCallPremium'] = new_item['net_call_premium']
|
|
new_item['netPutPremium'] = new_item['net_put_premium']
|
|
|
|
new_item['netPremium'] = abs(new_item['netCallPremium'] - new_item['netPutPremium'])
|
|
# Filter new_item to keep only specified elements
|
|
filtered_item = {key: new_item[key] for key in keep_elements if key in new_item}
|
|
updated_data.append(filtered_item)
|
|
except Exception as e:
|
|
print(f"Error processing ticker {item.get('ticker', 'unknown')}: {e}")
|
|
|
|
# Add rank to each item
|
|
for rank, item in enumerate(updated_data, 1):
|
|
item['rank'] = rank
|
|
res_list[sector] = updated_data
|
|
|
|
return res_list
|
|
|
|
|
|
|
|
def main():
|
|
market_tide = get_market_tide()
|
|
sector_data = get_sector_data()
|
|
top_sector_tickers = get_top_sector_tickers()
|
|
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
|
|
if len(data) > 0:
|
|
save_json(data)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|