468 lines
19 KiB
Python
468 lines
19 KiB
Python
from edgar import *
|
|
import ast
|
|
import ujson
|
|
from tqdm import tqdm
|
|
from datetime import datetime
|
|
from collections import defaultdict
|
|
import re
|
|
|
|
|
|
#Tell the SEC who you are
|
|
set_identity("Max Mustermann max.mustermann@indigo.com")
|
|
|
|
|
|
# Define quarter-end dates for a given year
|
|
#The last quarter Q4 result is not shown in any sec files
|
|
#But using the https://www.sec.gov/Archives/edgar/data/1045810/000104581024000029/nvda-20240128.htm 10-K you see the annual end result which can be subtracted with all Quarter results to obtain Q4 (dumb af but works so don't judge me people)
|
|
|
|
def format_name(name):
|
|
# Step 1: Insert spaces between camel case transitions (lowercase followed by uppercase)
|
|
formatted_name = re.sub(r'([a-z])([A-Z])', r'\1 \2', name)
|
|
|
|
# Step 2: Replace "And" with "&"
|
|
formatted_name = formatted_name.replace("And", " & ").replace('Revenue','')
|
|
|
|
return formatted_name
|
|
|
|
|
|
def add_value_growth(data):
|
|
"""
|
|
Adds a new key 'valueGrowth' to each entry in the data list.
|
|
|
|
Parameters:
|
|
- data (list): A list of dictionaries containing date and value lists.
|
|
|
|
Returns:
|
|
- list: A new list with the 'valueGrowth' key added to each dictionary.
|
|
"""
|
|
# Initialize a new list for the output data
|
|
updated_data = []
|
|
|
|
# Loop through the data from the latest to the oldest
|
|
for i in range(len(data)):
|
|
try:
|
|
current_entry = data[i].copy() # Create a copy of the current entry
|
|
current_values = current_entry['value']
|
|
|
|
# Initialize the growth percentages list
|
|
if i < len(data) - 1: # Only compute growth if there is a next entry
|
|
next_values = data[i + 1]['value']
|
|
growth_percentages = []
|
|
|
|
for j in range(len(current_values)):
|
|
# Convert values to integers if they are strings
|
|
next_value = int(next_values[j]) if isinstance(next_values[j], (int, str)) else 0
|
|
current_value = int(current_values[j]) if isinstance(current_values[j], (int, str)) else 0
|
|
|
|
# Calculate growth percentage if next_value is not zero
|
|
if next_value != 0:
|
|
growth = round(((current_value - next_value) / next_value) * 100,2)
|
|
else:
|
|
growth = None # Cannot calculate growth if next value is zero
|
|
|
|
growth_percentages.append(growth)
|
|
|
|
current_entry['valueGrowth'] = growth_percentages # Add the growth percentages
|
|
else:
|
|
current_entry['valueGrowth'] = [None] * len(current_values) # No growth for the last entry
|
|
|
|
updated_data.append(current_entry) # Append the updated entry to the output list
|
|
except:
|
|
pass
|
|
|
|
return updated_data
|
|
|
|
def sort_by_latest_date_and_highest_value(data):
|
|
# Define a key function to convert the date string to a datetime object
|
|
# and use the negative of the integer value for descending order
|
|
def sort_key(item):
|
|
date = datetime.strptime(item['date'], '%Y-%m-%d')
|
|
value = -int(item['value']) # Negative for descending order
|
|
return (date, value)
|
|
|
|
# Sort the list
|
|
sorted_data = sorted(data, key=sort_key, reverse=True)
|
|
|
|
return sorted_data
|
|
|
|
def aggregate_other_values(data):
|
|
aggregated = defaultdict(int)
|
|
result = []
|
|
|
|
# First pass: aggregate 'Other' values and keep non-'Other' items
|
|
for item in data:
|
|
date = item['date']
|
|
value = int(item['value'])
|
|
if item['name'] == 'Other':
|
|
aggregated[date] += value
|
|
else:
|
|
result.append(item)
|
|
|
|
# Second pass: add aggregated 'Other' values
|
|
for date, value in aggregated.items():
|
|
result.append({'name': 'Other', 'value': int(value), 'date': date})
|
|
|
|
return sorted(result, key=lambda x: (x['date'], x['name']))
|
|
|
|
# Define quarter-end dates for a given year
|
|
def closest_quarter_end(date_str):
|
|
date = datetime.strptime(date_str, "%Y-%m-%d")
|
|
year = date.year
|
|
|
|
# Define quarter end dates for the current year
|
|
q1 = datetime(year, 3, 31)
|
|
q2 = datetime(year, 6, 30)
|
|
q3 = datetime(year, 9, 30)
|
|
q4 = datetime(year, 12, 31)
|
|
|
|
# If the date is in January, return the last day of Q4 of the previous year
|
|
if date.month == 1:
|
|
closest = datetime(year - 1, 12, 31) # Last quarter of the previous year
|
|
else:
|
|
# Adjust to next year's Q4 if the date is in the last quarter of the current year
|
|
if date >= q4:
|
|
closest = q4.replace(year=year + 1) # Next year's last quarter
|
|
else:
|
|
# Find the closest quarter date
|
|
closest = min([q1, q2, q3, q4], key=lambda d: abs(d - date))
|
|
|
|
# Return the closest quarter date in 'YYYY-MM-DD' format
|
|
return closest.strftime("%Y-%m-%d")
|
|
|
|
|
|
def compute_q4_results(dataset):
|
|
# Group data by year and name
|
|
yearly_data = defaultdict(lambda: defaultdict(dict))
|
|
for item in dataset:
|
|
date = datetime.strptime(item['date'], '%Y-%m-%d')
|
|
year = date.year
|
|
quarter = (date.month - 1) // 3 + 1
|
|
yearly_data[year][item['name']][quarter] = item['value']
|
|
|
|
# Calculate Q4 results and update dataset
|
|
for year in sorted(yearly_data.keys(), reverse=True):
|
|
for name, quarters in yearly_data[year].items():
|
|
if 4 in quarters: # This is the year-end total
|
|
total = quarters[4]
|
|
q1 = quarters.get(1, 0)
|
|
q2 = quarters.get(2, 0)
|
|
q3 = quarters.get(3, 0)
|
|
q4_value = total - (q1 + q2 + q3)
|
|
|
|
# Update the original dataset
|
|
for item in dataset:
|
|
if item['name'] == name and item['date'] == f'{year}-12-31':
|
|
item['value'] = q4_value
|
|
break
|
|
|
|
return dataset
|
|
|
|
|
|
|
|
def generate_geography_dataset(dataset):
|
|
|
|
country_replacements = {
|
|
"americas": "United States",
|
|
"unitedstates": "United States",
|
|
"videogamebrandsunitedstates": "United States",
|
|
"greaterchina": "China",
|
|
"country:us": "United States",
|
|
"country:cn": "China",
|
|
"chinaincludinghongkong": "China"
|
|
}
|
|
|
|
# Custom order for specific countries
|
|
custom_order = {
|
|
'United States': 2,
|
|
'China': 1,
|
|
'Other': 0
|
|
}
|
|
|
|
aggregated_data = {}
|
|
|
|
for item in dataset:
|
|
try:
|
|
name = item.get('name', '').lower()
|
|
date = item.get('date')
|
|
value = int(float(item.get('value', 0)))
|
|
|
|
year = int(date[:4])
|
|
if year < 2019:
|
|
continue # Skip this item if the year is less than 2019
|
|
|
|
# Replace country name if necessary
|
|
country_name = country_replacements.get(name, 'Other')
|
|
|
|
# Use (country_name, date) as the key to sum values
|
|
key = (country_name, date)
|
|
|
|
if key in aggregated_data:
|
|
aggregated_data[key] += value # Add the value if the country-date pair exists
|
|
else:
|
|
aggregated_data[key] = value # Initialize the value if new country-date pair
|
|
except:
|
|
pass
|
|
|
|
# Convert the aggregated data back into the desired list format
|
|
dataset = [{'name': country, 'date': date, 'value': total_value} for (country, date), total_value in aggregated_data.items()]
|
|
|
|
|
|
dataset = aggregate_other_values(dataset)
|
|
dataset = sorted(
|
|
dataset,
|
|
key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), custom_order.get(item['name'], 3)),
|
|
reverse = True
|
|
)
|
|
|
|
#dataset = compute_q4_results(dataset)
|
|
result = {}
|
|
|
|
unique_names = sorted(
|
|
list(set(item['name'] for item in dataset if item['name'] not in {'CloudServiceAgreements'})),
|
|
key=lambda item: custom_order.get(item, 4), # Use 4 as default for items not in custom_order
|
|
reverse=True)
|
|
|
|
result = {}
|
|
|
|
# Iterate through the original data
|
|
for item in dataset:
|
|
# Get the date and value
|
|
date = item['date']
|
|
value = item['value']
|
|
|
|
# Initialize the dictionary for the date if not already done
|
|
if date not in result:
|
|
result[date] = {'date': date, 'value': []}
|
|
|
|
# Append the value to the list
|
|
result[date]['value'].append(value)
|
|
|
|
# Convert the result dictionary to a list
|
|
res_list = list(result.values())
|
|
|
|
# Print the final result
|
|
res_list = add_value_growth(res_list)
|
|
|
|
final_result = {'names': unique_names, 'history': res_list}
|
|
return final_result
|
|
|
|
def generate_revenue_dataset(dataset):
|
|
name_replacements = {
|
|
"datacenter": "Data Center",
|
|
"professionalvisualization": "Visualization",
|
|
"oemandother": "OEM & Other",
|
|
"automotive": "Automotive",
|
|
"oemip": "OEM & Other",
|
|
"gaming": "Gaming",
|
|
"mac": "Mac",
|
|
"iphone": "IPhone",
|
|
"ipad": "IPad",
|
|
"wearableshomeandaccessories": "Wearables",
|
|
"hardwareandaccessories": "Hardware & Accessories",
|
|
"software": "Software",
|
|
"collectibles": "Collectibles",
|
|
"automotivesales": "Auto",
|
|
"automotiveleasing": "Auto Leasing",
|
|
"energygenerationandstoragesegment": "Energy and Storage",
|
|
"servicesandother": "Services & Other",
|
|
"automotiveregulatorycredits": "Regulatory Credits",
|
|
"intelligentcloud": "Intelligent Cloud",
|
|
"productivityandbusinessprocesses": "Productivity & Business",
|
|
"searchandnewsadvertising": "Advertising",
|
|
"linkedincorporation": "LinkedIn",
|
|
"morepersonalcomputing": "More Personal Computing",
|
|
"serviceother": "Service Other",
|
|
"governmentoperatingsegment": "Government Operating Segment",
|
|
"internationaldevelopmentallicensedmarketsandcorporate": "License Market",
|
|
"youtubeadvertisingrevenue": "Youtube Ads",
|
|
"googleadvertisingrevenue": "Google Ads",
|
|
"cloudservicesandlicensesupport": "Cloude Services & Support",
|
|
"infrastructurecloudservicesandlicensesupport": "Infrastructure Cloud",
|
|
"applicationscloudservicesandlicensesupport": "Application Cloud"
|
|
}
|
|
excluded_names = {'government','enterpriseembeddedandsemicustom','computingandgraphics','automotiveleasing ','officeproductsandcloudservices','serverproductsandcloudservices','automotiverevenues','automotive','computeandnetworking','graphics','gpu','automotivesegment','energygenerationandstoragesales','energygenerationandstorage','automotivesaleswithoutresalevalueguarantee','salesandservices','compute', 'networking', 'cloudserviceagreements', 'digital', 'allother', 'preownedvideogameproducts'}
|
|
dataset = [item for item in dataset if item['name'].lower() not in excluded_names]
|
|
|
|
# Find all unique names and dates
|
|
all_dates = sorted(set(item['date'] for item in dataset))
|
|
all_names = sorted(set(item['name'] for item in dataset))
|
|
dataset = [revenue for revenue in dataset if revenue['name'].lower() not in excluded_names]
|
|
# Check and fill missing combinations at the beginning
|
|
name_date_map = defaultdict(lambda: defaultdict(lambda: None))
|
|
for item in dataset:
|
|
name_date_map[item['name']][item['date']] = item['value']
|
|
|
|
# Ensure all names have entries for all dates
|
|
for name in all_names:
|
|
for date in all_dates:
|
|
if date not in name_date_map[name]:
|
|
dataset.append({'name': name, 'date': date, 'value': None})
|
|
|
|
# Clean and process the dataset values
|
|
processed_dataset = []
|
|
for item in dataset:
|
|
if item['value'] not in (None, '', 0):
|
|
processed_dataset.append({
|
|
'name': item['name'],
|
|
'date': item['date'],
|
|
'value': int(float(item['value']))
|
|
})
|
|
else:
|
|
processed_dataset.append({
|
|
'name': item['name'],
|
|
'date': item['date'],
|
|
'value': None
|
|
})
|
|
|
|
dataset = processed_dataset
|
|
|
|
|
|
#If the last value of the latest date is null or 0 remove all names in the list
|
|
dataset = sorted(dataset, key=lambda item: datetime.strptime(item['date'], '%Y-%m-%d'), reverse=True)
|
|
remember_names = set() # Use a set for faster membership checks
|
|
|
|
first_date = dataset[0]['date']
|
|
|
|
# Iterate through dataset to remember names where date matches first_date and value is None
|
|
for item in dataset:
|
|
if item['date'] == first_date and (item['value'] == None or item['value'] == 0):
|
|
remember_names.add(item['name'])
|
|
print(item['name'])
|
|
|
|
# Use list comprehension to filter items not in remember_names
|
|
dataset = [{**item} for item in dataset if item['name'] not in remember_names]
|
|
|
|
|
|
dataset = [ item for item in dataset if datetime.strptime(item['date'], '%Y-%m-%d').year >= 2019]
|
|
|
|
|
|
# Group by name and calculate total value
|
|
name_totals = defaultdict(int)
|
|
for item in dataset:
|
|
name_totals[item['name']] += item['value'] if item['value'] != None else 0
|
|
|
|
# Sort names by total value and get top 5, ensuring excluded names are not considered
|
|
top_names = sorted(
|
|
[(name, total) for name, total in name_totals.items() if name.lower() not in excluded_names],
|
|
key=lambda x: x[1],
|
|
reverse=True
|
|
)[:5]
|
|
top_names = [name for name, _ in top_names]
|
|
|
|
# Filter dataset to include only top 5 names
|
|
dataset = [item for item in dataset if item['name'] in top_names]
|
|
|
|
# Sort the dataset
|
|
dataset.sort(key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), item['value'] if item['value'] != None else 0), reverse=True)
|
|
|
|
top_names = [name_replacements.get(name.lower(), format_name(name)) for name in top_names]
|
|
print(top_names)
|
|
|
|
result = {}
|
|
for item in dataset:
|
|
date = item['date']
|
|
value = item['value']
|
|
if date not in result:
|
|
result[date] = {'date': date, 'value': []}
|
|
result[date]['value'].append(value)
|
|
|
|
|
|
|
|
# Convert the result dictionary to a list
|
|
res_list = list(result.values())
|
|
|
|
# Add value growth (assuming add_value_growth function exists)
|
|
res_list = add_value_growth(res_list)
|
|
final_result = {'names': top_names, 'history': res_list}
|
|
return final_result
|
|
|
|
|
|
|
|
|
|
def process_filings(filings, symbol):
|
|
revenue_sources = []
|
|
geography_sources = []
|
|
|
|
|
|
for i in range(0,17):
|
|
try:
|
|
filing_xbrl = filings[i].xbrl()
|
|
facts = filing_xbrl.facts.data
|
|
latest_rows = facts.groupby('dimensions').head(1)
|
|
|
|
for index, row in latest_rows.iterrows():
|
|
dimensions_str = row.get("dimensions", "{}")
|
|
try:
|
|
dimensions_dict = ast.literal_eval(dimensions_str) if isinstance(dimensions_str, str) else dimensions_str
|
|
except (ValueError, SyntaxError):
|
|
dimensions_dict = {}
|
|
|
|
#print(dimensions_dict)
|
|
|
|
for column_name in [
|
|
"srt:StatementGeographicalAxis",
|
|
"us-gaap:StatementBusinessSegmentsAxis",
|
|
"srt:ProductOrServiceAxis",
|
|
]:
|
|
product_dimension = dimensions_dict.get(column_name) if isinstance(dimensions_dict, dict) else None
|
|
|
|
if row["namespace"] == "us-gaap" and product_dimension is not None and (
|
|
product_dimension.startswith(symbol.lower() + ":") or
|
|
product_dimension.startswith("country" + ":") or
|
|
product_dimension.startswith("us-gaap"+":") or
|
|
product_dimension.startswith("srt"+":") or
|
|
product_dimension.startswith("goog"+":")
|
|
):
|
|
replacements = {
|
|
"Member": "",
|
|
"VideoGameAccessories": "HardwareAndAccessories",
|
|
"NewVideoGameHardware": "HardwareAndAccessories",
|
|
"NewVideoGameSoftware": "Software",
|
|
f"{symbol.lower()}:": "",
|
|
"goog:": "",
|
|
"us-gaap:": "",
|
|
"srt:": "",
|
|
"SegmentMember": "",
|
|
}
|
|
name = product_dimension
|
|
for old, new in replacements.items():
|
|
name = name.replace(old, new)
|
|
|
|
if symbol in ['ORCL','SAVE','BA','NFLX','LLY','MSFT','META','NVDA','AAPL','GME']:
|
|
column_list = ["srt:ProductOrServiceAxis"]
|
|
else:
|
|
column_list = ["srt:ProductOrServiceAxis", "us-gaap:StatementBusinessSegmentsAxis"]
|
|
|
|
if column_name in column_list:
|
|
revenue_sources.append({"name": name, "value": row["value"], "date": row["end_date"]})
|
|
else:
|
|
geography_sources.append({"name": name, "value": row["value"], "date": row["end_date"]})
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
return revenue_sources, geography_sources
|
|
|
|
def run(symbol):
|
|
# First try with 10-Q filings only
|
|
filings = Company(symbol).get_filings(form=["10-Q"]).latest(20)
|
|
revenue_sources, geography_sources = process_filings(filings, symbol)
|
|
|
|
# If no geography sources found, try with 10-K filings
|
|
if not geography_sources:
|
|
print(f"No geography sources found in 10-Q for {symbol}, checking 10-K filings...")
|
|
filings_10k = Company(symbol).get_filings(form=["10-K"]).latest(20)
|
|
_, geography_sources = process_filings(filings_10k, symbol)
|
|
|
|
print(revenue_sources)
|
|
#print(geography_sources)
|
|
revenue_dataset = generate_revenue_dataset(revenue_sources)
|
|
geographic_dataset = generate_geography_dataset(geography_sources)
|
|
final_dataset = {'revenue': revenue_dataset, 'geographic': geographic_dataset}
|
|
|
|
with open(f"json/business-metrics/{symbol}.json", "w") as file:
|
|
ujson.dump(final_dataset, file)
|
|
|
|
if __name__ == "__main__":
|
|
for symbol in ['ORCL']: #['ORCL','GOOGL','AMD','SAVE','BA','ADBE','NFLX','PLTR','MSFT','META','TSLA','NVDA','AAPL','GME']:
|
|
run(symbol) |