199 lines
7.3 KiB
Python
199 lines
7.3 KiB
Python
from selenium import webdriver
|
|
from selenium.webdriver.common.by import By
|
|
from selenium.webdriver.chrome.service import Service
|
|
from selenium.webdriver.chrome.options import Options
|
|
from selenium.webdriver.support.ui import WebDriverWait
|
|
from selenium.webdriver.support import expected_conditions as EC
|
|
from webdriver_manager.chrome import ChromeDriverManager
|
|
from geopy.geocoders import Nominatim
|
|
import aiohttp
|
|
import asyncio
|
|
import orjson
|
|
from dotenv import load_dotenv
|
|
import os
|
|
import sqlite3
|
|
import pandas as pd
|
|
|
|
load_dotenv()
|
|
geolocator = Nominatim(user_agent="myGeocodingApp/1.0 (your-email@example.com)")
|
|
|
|
|
|
query_template = """
|
|
SELECT
|
|
date, close
|
|
FROM
|
|
"{symbol}"
|
|
WHERE
|
|
date BETWEEN ? AND ?
|
|
"""
|
|
|
|
|
|
def save_json(data):
|
|
path = "json/tracker/potus"
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
with open(f"{path}/data.json", "wb") as file:
|
|
file.write(orjson.dumps(data))
|
|
|
|
# Set up the Selenium WebDriver
|
|
chrome_options = Options()
|
|
chrome_options.add_argument("--headless") # Run browser in headless mode
|
|
chrome_options.add_argument("--disable-gpu")
|
|
chrome_options.add_argument("--no-sandbox")
|
|
|
|
# Replace 'path/to/chromedriver' with your actual chromedriver path
|
|
service = Service(ChromeDriverManager().install())
|
|
driver = webdriver.Chrome(service=service, options=chrome_options)
|
|
|
|
# Open the URL
|
|
url = os.getenv('POTUS_TRACKER')
|
|
driver.get(url)
|
|
|
|
def get_bills():
|
|
try:
|
|
# Wait for the page to load
|
|
WebDriverWait(driver, 10).until(
|
|
EC.presence_of_element_located((By.ID, "legislation-container"))
|
|
)
|
|
|
|
# Locate the legislation container
|
|
legislation_container = driver.find_element(By.ID, "legislation-container")
|
|
legislation_items = legislation_container.find_elements(By.CLASS_NAME, "legislation-item")
|
|
|
|
# Extract data
|
|
data = []
|
|
for item in legislation_items:
|
|
# Badge
|
|
badge = item.find_element(By.CLASS_NAME, "badge").text
|
|
|
|
# Header (Title)
|
|
header = item.find_element(By.CLASS_NAME, "legislation-header").text
|
|
|
|
# Description
|
|
description = item.find_element(By.CLASS_NAME, "legislation-description").text
|
|
|
|
# Time Ago (if present)
|
|
time_ago_element = item.find_elements(By.CLASS_NAME, "datetime-ago")
|
|
time_ago = time_ago_element[0].text if time_ago_element else None
|
|
|
|
# Meta Info (e.g., status)
|
|
meta_info_elements = item.find_elements(By.CLASS_NAME, "legislation-meta")
|
|
meta_info = []
|
|
if meta_info_elements:
|
|
for meta_item in meta_info_elements[0].find_elements(By.TAG_NAME, "div"):
|
|
meta_info.append(meta_item.text.strip())
|
|
|
|
# Check if there's a "Read More" button to click
|
|
read_more_buttons = item.find_elements(By.CLASS_NAME, "read-more-btn") # Now using correct class
|
|
if read_more_buttons:
|
|
print("Found 'Read More' button, clicking it...")
|
|
# Click the "Read More" button
|
|
read_more_buttons[0].click()
|
|
|
|
# Wait for the popup to become visible
|
|
#print("Waiting for the popup to appear...")
|
|
WebDriverWait(driver, 10).until(
|
|
EC.visibility_of_element_located((By.ID, "popup-container")) # Wait until popup is visible
|
|
)
|
|
|
|
# Extract content from the popup
|
|
#print("Popup appeared, extracting content...")
|
|
popup_title = driver.find_element(By.ID, "popup-title").text
|
|
popup_content = driver.find_element(By.ID, "popup-content").text
|
|
|
|
|
|
# Add the popup content and URL to the description (optional)
|
|
description = f"{popup_content}"
|
|
|
|
# Close the popup (optional)
|
|
close_button = driver.find_element(By.ID, "popup-close-button")
|
|
close_button.click()
|
|
#print("Popup closed.")
|
|
|
|
# Append data to list
|
|
data.append({
|
|
"badge": badge,
|
|
"title": header,
|
|
"description": description,
|
|
"time": time_ago,
|
|
})
|
|
|
|
# Print scraped data
|
|
|
|
return data
|
|
finally:
|
|
# Close the driver
|
|
driver.quit()
|
|
|
|
|
|
|
|
async def get_data():
|
|
bill_data = get_bills()
|
|
query = query_template.format(symbol='SPY')
|
|
|
|
etf_con = sqlite3.connect('etf.db')
|
|
etf_cursor = etf_con.cursor()
|
|
etf_cursor.execute("PRAGMA journal_mode = wal")
|
|
|
|
df = pd.read_sql_query(query, etf_con, params=("2025-01-20", '2025-01-27'))
|
|
if not df.empty:
|
|
df['changesPercentage'] = (df['close'].pct_change() * 100).round(2)
|
|
sp500_list = df.dropna().to_dict(orient="records") # Drop NaN values and convert to list
|
|
etf_con.close()
|
|
|
|
return_since = round((sp500_list[-1]['close']/sp500_list[0]['close']-1)*100,2)
|
|
|
|
url = "https://media-cdn.factba.se/rss/json/trump/calendar-full.json"
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.get(url) as response:
|
|
if response.status == 200:
|
|
data = await response.json()
|
|
# Filter out items with None for date or time, then sort
|
|
data = sorted(
|
|
(item for item in data if item['date'] is not None and item['time'] is not None),
|
|
key=lambda x: (x['date'], x['time']),
|
|
reverse=True
|
|
)
|
|
|
|
else:
|
|
print(f"Failed to fetch data. HTTP status code: {response.status}")
|
|
|
|
if len(data) > 0 and len(bill_data) > 0:
|
|
# Latest location
|
|
details = data[0]['details']
|
|
location = data[0]['location']
|
|
|
|
|
|
for address in [details, location]:
|
|
try:
|
|
if any(place in address for place in ["White House", "Blair House","Washington DC", "East Room"]):
|
|
location = "Washington, DC"
|
|
else:
|
|
location = address # Otherwise, use the full address string
|
|
|
|
# Geocode the processed address
|
|
location_data = geolocator.geocode(location)
|
|
city = location_data.address.split(',', 1)[0]
|
|
if location_data:
|
|
|
|
# Extract city from the address components
|
|
address_components = location_data.raw.get('address', {})
|
|
|
|
|
|
# Extract latitude and longitude
|
|
latitude = location_data.latitude
|
|
longitude = location_data.longitude
|
|
print(f"Latitude: {latitude}, Longitude: {longitude}")
|
|
break
|
|
except:
|
|
pass
|
|
|
|
for item in data:
|
|
for price_item in sp500_list:
|
|
if item['date'] == price_item['date']:
|
|
item['changesPercentage'] = price_item['changesPercentage']
|
|
break
|
|
res_dict = {'returnSince': return_since,'city': city, 'lon': longitude, 'lat': latitude, 'history': data, 'billData': bill_data}
|
|
save_json(res_dict)
|
|
|
|
asyncio.run(get_data()) |