backend/app/cron_hedge_funds.py
2024-08-19 13:18:08 +02:00

173 lines
5.9 KiB
Python

import sqlite3
import os
import ujson
import time
from collections import Counter
from tqdm import tqdm
keys_to_keep = [
"type", "securityName", "symbol", "weight",
"changeInSharesNumberPercentage", "sharesNumber",
"marketValue", "avgPricePaid", "putCallShare"
]
def format_company_name(company_name):
remove_strings = [', LLC','LLC', ',', 'LP', 'LTD', 'LTD.', 'INC.', 'INC', '.', '/DE/','/MD/','PLC']
preserve_words = ['FMR','MCF']
remove_strings_set = set(remove_strings)
preserve_words_set = set(preserve_words)
words = company_name.split()
formatted_words = []
for word in words:
if word in preserve_words_set:
formatted_words.append(word)
else:
new_word = word
for string in remove_strings_set:
new_word = new_word.replace(string, '')
formatted_words.append(new_word.title())
return ' '.join(formatted_words)
def all_hedge_funds(con):
# Connect to the SQLite database
cursor = con.cursor()
cursor.execute("SELECT cik, name, numberOfStocks, marketValue, winRate, turnover, performancePercentage3year FROM institutes")
all_ciks = cursor.fetchall()
res_list = [{
'cik': row[0],
'name': format_company_name(row[1]),
'numberOfStocks': row[2],
'marketValue': row[3],
'winRate': row[4],
'turnover': row[5],
'performancePercentage3year': row[6]
} for row in all_ciks if row[2] >= 3]
sorted_res_list = sorted(res_list, key=lambda x: x['marketValue'], reverse=True)
with open(f"json/hedge-funds/all-hedge-funds.json", 'w') as file:
ujson.dump(sorted_res_list, file)
def spy_performance():
import pandas as pd
import yfinance as yf
from datetime import datetime
# Define the start date and end date
start_date = '1993-01-01'
end_date = datetime.today().strftime('%Y-%m-%d')
# Generate the range of dates with quarterly frequency
date_range = pd.date_range(start=start_date, end=end_date, freq='QE')
# Convert the dates to the desired format (end of quarter dates)
end_of_quarters = date_range.strftime('%Y-%m-%d').tolist()
data = []
df = yf.download('SPY', start='1993-01-01', end=datetime.today(), interval="1d").reset_index()
df = df.rename(columns={'Adj Close': 'close', 'Date': 'date'})
df['date'] = df['date'].dt.strftime('%Y-%m-%d')
for target_date in end_of_quarters:
original_date = target_date
# Find close price for '2015-03-31' or the closest available date prior to it
while target_date not in df['date'].values:
# If the target date doesn't exist, move one day back
target_date = (pd.to_datetime(target_date) - pd.Timedelta(days=1)).strftime('%Y-%m-%d')
# Get the close price for the found or closest date
close_price = round(df[df['date'] == target_date]['close'].values[0],2)
data.append({'date': original_date, 'price': close_price})
def get_data(cik, stock_sectors):
cursor.execute("SELECT cik, name, numberOfStocks, performancePercentage3year, performancePercentage5year, performanceSinceInceptionPercentage, averageHoldingPeriod, turnover, marketValue, winRate, holdings, summary FROM institutes WHERE cik = ?", (cik,))
cik_data = cursor.fetchall()
res = [{
'cik': row[0],
'name': row[1],
'numberOfStocks': row[2],
'performancePercentage3year': row[3],
'performancePercentage5year': row[4],
'performanceSinceInceptionPercentage': row[5],
'averageHoldingPeriod': row[6],
'turnover': row[7],
'marketValue': row[8],
'winRate': row[9],
'holdings': ujson.loads(row[10]),
'summary': ujson.loads(row[11]),
} for row in cik_data]
if not res:
return None # Exit if no data is found
res = res[0] #latest data
filtered_holdings = [
{key: holding[key] for key in keys_to_keep}
for holding in res['holdings']
]
res['holdings'] = filtered_holdings
# Cross-reference symbols in holdings with stock_sectors to determine sectors
sector_counts = Counter()
for holding in res['holdings']:
symbol = holding['symbol']
sector = next((item['sector'] for item in stock_sectors if item['symbol'] == symbol), None)
if sector:
sector_counts[sector] += 1
# Calculate the total number of holdings
total_holdings = sum(sector_counts.values())
# Calculate the percentage for each sector and get the top 5
top_5_sectors_percentage = [
{sector: round((count / total_holdings) * 100, 2)}
for sector, count in sector_counts.most_common(5)
]
# Add the top 5 sectors information to the result
res['topSectors'] = top_5_sectors_percentage
if res:
with open(f"json/hedge-funds/companies/{cik}.json", 'w') as file:
ujson.dump(res, file)
if __name__ == '__main__':
con = sqlite3.connect('institute.db')
stock_con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT cik FROM institutes")
cik_symbols = [row[0] for row in cursor.fetchall()]
try:
stock_cursor = stock_con.cursor()
stock_cursor.execute("SELECT DISTINCT symbol, sector FROM stocks")
stock_sectors = [{'symbol': row[0], 'sector': row[1]} for row in stock_cursor.fetchall()]
finally:
# Ensure that the cursor and connection are closed even if an error occurs
stock_cursor.close()
stock_con.close()
all_hedge_funds(con)
spy_performance()
for cik in tqdm(cik_symbols):
try:
get_data(cik, stock_sectors)
except Exception as e:
print(e)
con.close()