- {#if Object?.keys(data?.getPriceAnalysis)?.length > 0}
+ {#if data?.getAIScore?.backtest?.length > 0}
- {removeCompanyStrings($displayCompanyName)} AI Score + {removeCompanyStrings($displayCompanyName)} AI Score Forecast
-
+
+
+
+
+
+ Score Accuracy
+
+
+ {data?.getAIScore?.accuracy
+ ? data?.getAIScore?.accuracy + "%"
+ : "n/a"}
+
+
+
+
+
+ Latest Forecast
+
+
+ Bullish
+
+
+
+
+ Avg Return
+
+
+ {avgReturn?.toFixed(2)}%
+
+
-
+
-
+
@@ -502,9 +563,13 @@
0 ? "an increase" : "a decrease"
- } of ${medianChange}% compared to the current price
- of ${price}.`}
+ text={`Using our AI model trained on historical seasonal data, we generated a 12-month forecast for ${removeCompanyStrings($displayCompanyName)}. The model predicts a median target price of ${medianPriceTarget}, ranging from ${lowPriceTarget} to ${highPriceTarget}, indicating a ${medianChange > 0 ? "potential increase" : "potential decrease"} of ${medianChange}% from the current price of ${price}.`}
/>
| Date | Q1 '23 | -Q2 '23 | -Q3 '23 | -Q4 '23 | {item} | + {/each} +
|---|---|---|---|---|
| Score | -8 (Bullish) | -9 (Bullish) | -8 (Bullish) | -7 (Hold) |
| Score | + {#each tableScore as val} ++ {val} + {[10, 9, 8, 7]?.includes(Number(val)) + ? "(Bullish)" + : [6, 5, 4]?.includes(Number(val)) + ? "(Hold)" + : "(Sell)"} + | + {/each} +|||
| QoQ Change | -0 - ? "before:content-['+'] text-green-600 dark:text-[#00FC50]" - : "text-red-600 dark:text-[#FF2F1F]"} - >{lowChange}% | -0 - ? "before:content-['+'] text-green-600 dark:text-[#00FC50]" - : "text-red-600 dark:text-[#FF2F1F]"} - >{avgChange}% | -0 - ? "before:content-['+'] text-green-600 dark:text-[#00FC50]" - : "text-red-600 dark:text-[#FF2F1F]"} - >{medianChange}% | -0 - ? "before:content-['+'] text-green-600 dark:text-[#00FC50]" - : "text-red-600 dark:text-[#FF2F1F]"} - >{highChange}% |
Following the AI Score for {removeCompanyStrings( $displayCompanyName, - )} the model shows that the total return would be - +22.2%, with a maximum drawdown of - -12% based on the backtesting results. + )} the model shows that the average return would be + {avgReturn?.toFixed(2)}% based on the backtesting results.
@@ -519,14 +584,7 @@