update market flow

This commit is contained in:
MuslemRahimi 2025-01-26 16:41:24 +01:00
parent 93f83a218b
commit 37917fd039

View File

@ -9,15 +9,10 @@ import asyncio
import aiohttp
import pytz
import requests # Add missing import
from collections import defaultdict
load_dotenv()
api_key = os.getenv('UNUSUAL_WHALES_API_KEY')
fmp_api_key = os.getenv('FMP_API_KEY')
headers = {
"Accept": "application/json, text/plain",
"Authorization": api_key
}
ny_tz = pytz.timezone('America/New_York')
@ -30,12 +25,7 @@ def save_json(data):
# Function to convert and match timestamps
def add_close_to_data(price_list, data):
for entry in data:
# Replace 'Z' with '+00:00' to make it a valid ISO format
iso_timestamp = entry['timestamp'].replace('Z', '+00:00')
# Parse timestamp and convert to New York time
timestamp = datetime.fromisoformat(iso_timestamp).astimezone(ny_tz)
formatted_time = timestamp.strftime('%Y-%m-%d %H:%M:%S')
formatted_time = entry['timestamp']
# Match with price_list
for price in price_list:
@ -191,35 +181,116 @@ async def get_stock_chart_data(ticker):
else:
return []
def get_market_tide():
ticker_list = ['SPY','XLB','XLC','XLE','XLF','XLI','XLK','XLP','XLRE','XLU','XLV','XLY']
res_list = {}
def get_market_tide(interval_5m=False):
ticker_list = ['SPY']
res_list = []
for ticker in ticker_list:
price_list = asyncio.run(get_stock_chart_data(ticker))
if len(price_list) == 0:
with open(f"json/one-day-price/{ticker}.json") as file:
price_list = orjson.loads(file.read())
with open("json/options-flow/feed/data.json", "r") as file:
data = orjson.loads(file.read())
# Filter and sort data
ticker_options = [item for item in data if item['ticker'] == ticker]
ticker_options.sort(key=lambda x: x['time'])
url = f"https://api.unusualwhales.com/api/market/{ticker}/etf-tide"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json().get('data', [])
data = [{k: v for k, v in item.items() if k != "date"} for item in data]
# Track changes per interval
delta_data = defaultdict(lambda: {
'cumulative_net_call_premium': 0,
'cumulative_net_put_premium': 0,
'call_ask_vol': 0,
'call_bid_vol': 0,
'put_ask_vol': 0,
'put_bid_vol': 0
})
else:
raise Exception(f"Error fetching market tide data: {response.status_code}")
for item in ticker_options:
try:
# Parse and standardize timestamp
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
# Truncate to start of minute (for 1m summaries)
dt = dt.replace(second=0, microsecond=0)
# Adjust for 5-minute intervals if needed
if interval_5m:
dt -= timedelta(minutes=dt.minute % 5)
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
# Combine SPY data and market tide data
data = add_close_to_data(price_list, data)
data = convert_timestamps(data)
# Extract metrics
cost = float(item.get("cost_basis", 0))
sentiment = item.get("sentiment", "").lower()
put_call = item.get("put_call", "").lower()
vol = int(item.get("volume", 1))
# Update premium metrics
if put_call == "calls":
if sentiment == "bullish":
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
delta_data[rounded_ts]['call_ask_vol'] += vol
elif sentiment == "bearish":
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
delta_data[rounded_ts]['call_bid_vol'] += vol
elif put_call == "puts":
if sentiment == "bullish":
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
delta_data[rounded_ts]['put_ask_vol'] += vol
elif sentiment == "bearish":
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
delta_data[rounded_ts]['put_bid_vol'] += vol
except Exception as e:
print(f"Error processing item: {e}")
# Calculate cumulative values over time
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
for ts in sorted_ts:
# Update cumulative values
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
# Calculate derived metrics
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - \
(cumulative['put_ask'] - cumulative['put_bid'])
res_list.append({
'timestamp': ts,
'ticker': ticker,
'net_call_premium': cumulative['net_call_premium'],
'net_put_premium': cumulative['net_put_premium'],
'call_volume': call_volume,
'put_volume': put_volume,
'net_volume': net_volume
})
res_list.sort(key=lambda x: x['timestamp'])
price_list = asyncio.run(get_stock_chart_data(ticker))
if len(price_list) == 0:
with open(f"json/one-day-price/{ticker}.json") as file:
price_list = orjson.loads(file.read())
data = add_close_to_data(price_list, res_list)
res_list[ticker] = data
return res_list
def get_top_sector_tickers():
@ -335,15 +406,16 @@ def get_top_spy_tickers():
def main():
market_tide = get_market_tide()
data = {'marketTide': market_tide}
'''
sector_data = get_sector_data()
top_sector_tickers = get_top_sector_tickers()
top_spy_tickers = get_top_spy_tickers()
top_sector_tickers['SPY'] = top_spy_tickers
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
'''
if len(data) > 0:
save_json(data)
if __name__ == '__main__':