backend/app/cron_market_flow.py
2025-01-26 16:41:24 +01:00

423 lines
16 KiB
Python

import os
import pandas as pd
import orjson
from dotenv import load_dotenv
import sqlite3
from datetime import datetime, timedelta
from GetStartEndDate import GetStartEndDate
import asyncio
import aiohttp
import pytz
import requests # Add missing import
from collections import defaultdict
load_dotenv()
fmp_api_key = os.getenv('FMP_API_KEY')
ny_tz = pytz.timezone('America/New_York')
def save_json(data):
directory = "json/market-flow"
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
file.write(orjson.dumps(data))
# Function to convert and match timestamps
def add_close_to_data(price_list, data):
for entry in data:
formatted_time = entry['timestamp']
# Match with price_list
for price in price_list:
if price['date'] == formatted_time:
entry['close'] = price['close']
break # Match found, no need to continue searching
return data
def convert_timestamps(data_list):
ny_tz = pytz.timezone('America/New_York')
for item in data_list:
try:
# Get the timestamp and split on '.'
timestamp = item['timestamp']
base_time = timestamp.split('.')[0]
# Handle microseconds if present
if '.' in timestamp:
microseconds = timestamp.split('.')[1].replace('Z', '')
microseconds = microseconds.ljust(6, '0') # Pad with zeros if needed
base_time = f"{base_time}.{microseconds}"
# Replace 'Z' with '+00:00' (for UTC)
base_time = base_time.replace('Z', '+00:00')
# Parse the timestamp
dt = datetime.fromisoformat(base_time)
# Ensure the datetime is timezone-aware (assumed to be UTC initially)
if dt.tzinfo is None:
dt = pytz.utc.localize(dt)
# Convert the time to New York timezone (automatically handles DST)
ny_time = dt.astimezone(ny_tz)
# Optionally, format to include date and time
item['timestamp'] = ny_time.strftime('%Y-%m-%d %H:%M:%S')
except ValueError as e:
raise ValueError(f"Invalid timestamp format: {item['timestamp']} - Error: {str(e)}")
except Exception as e:
raise Exception(f"Error processing timestamp: {item['timestamp']} - Error: {str(e)}")
return data_list
def safe_round(value):
"""Attempt to convert a value to float and round it. Return the original value if not possible."""
try:
return round(float(value), 2)
except (ValueError, TypeError):
return value
def calculate_neutral_premium(data_item):
"""Calculate the neutral premium for a data item."""
call_premium = float(data_item['call_premium'])
put_premium = float(data_item['put_premium'])
bearish_premium = float(data_item['bearish_premium'])
bullish_premium = float(data_item['bullish_premium'])
total_premiums = bearish_premium + bullish_premium
observed_premiums = call_premium + put_premium
neutral_premium = observed_premiums - total_premiums
return safe_round(neutral_premium)
def generate_time_intervals(start_time, end_time):
"""Generate 1-minute intervals from start_time to end_time."""
intervals = []
current_time = start_time
while current_time <= end_time:
intervals.append(current_time.strftime('%Y-%m-%d %H:%M:%S'))
current_time += timedelta(minutes=1)
return intervals
def get_sector_data():
try:
url = "https://api.unusualwhales.com/api/market/sector-etfs"
response = requests.get(url, headers=headers)
data = response.json().get('data', [])
res_list = []
processed_data = []
for item in data:
symbol = item['ticker']
bearish_premium = float(item['bearish_premium'])
bullish_premium = float(item['bullish_premium'])
neutral_premium = calculate_neutral_premium(item)
# Step 1: Replace 'full_name' with 'name' if needed
new_item = {
'name' if key == 'full_name' else key: safe_round(value)
for key, value in item.items()
if key != 'in_out_flow'
}
# Step 2: Replace 'name' values
if str(new_item.get('name')) == 'Consumer Staples':
new_item['name'] = 'Consumer Defensive'
elif str(new_item.get('name')) == 'Consumer Discretionary':
new_item['name'] = 'Consumer Cyclical'
elif str(new_item.get('name')) == 'Health Care':
new_item['name'] = 'Healthcare'
elif str(new_item.get('name')) == 'Financials':
new_item['name'] = 'Financial Services'
elif str(new_item.get('name')) == 'Materials':
new_item['name'] = 'Basic Materials'
new_item['premium_ratio'] = [
safe_round(bearish_premium),
neutral_premium,
safe_round(bullish_premium)
]
with open(f"json/quote/{symbol}.json") as file:
quote_data = orjson.loads(file.read())
new_item['price'] = round(quote_data.get('price', 0), 2)
new_item['changesPercentage'] = round(quote_data.get('changesPercentage', 0), 2)
#get prem tick data:
'''
if symbol != 'SPY':
prem_tick_history = get_etf_tide(symbol)
#if symbol == 'XLB':
# print(prem_tick_history[10])
new_item['premTickHistory'] = prem_tick_history
'''
processed_data.append(new_item)
return processed_data
except Exception as e:
print(e)
return []
async def get_stock_chart_data(ticker):
start_date_1d, end_date_1d = GetStartEndDate().run()
start_date = start_date_1d.strftime("%Y-%m-%d")
end_date = end_date_1d.strftime("%Y-%m-%d")
url = f"https://financialmodelingprep.com/api/v3/historical-chart/1min/{ticker}?from={start_date}&to={end_date}&apikey={fmp_api_key}"
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
if response.status == 200:
data = await response.json()
data = sorted(data, key=lambda x: x['date'])
return data
else:
return []
def get_market_tide(interval_5m=False):
ticker_list = ['SPY']
res_list = []
for ticker in ticker_list:
with open("json/options-flow/feed/data.json", "r") as file:
data = orjson.loads(file.read())
# Filter and sort data
ticker_options = [item for item in data if item['ticker'] == ticker]
ticker_options.sort(key=lambda x: x['time'])
# Track changes per interval
delta_data = defaultdict(lambda: {
'cumulative_net_call_premium': 0,
'cumulative_net_put_premium': 0,
'call_ask_vol': 0,
'call_bid_vol': 0,
'put_ask_vol': 0,
'put_bid_vol': 0
})
for item in ticker_options:
try:
# Parse and standardize timestamp
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
# Truncate to start of minute (for 1m summaries)
dt = dt.replace(second=0, microsecond=0)
# Adjust for 5-minute intervals if needed
if interval_5m:
dt -= timedelta(minutes=dt.minute % 5)
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
# Extract metrics
cost = float(item.get("cost_basis", 0))
sentiment = item.get("sentiment", "").lower()
put_call = item.get("put_call", "").lower()
vol = int(item.get("volume", 1))
# Update premium metrics
if put_call == "calls":
if sentiment == "bullish":
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
delta_data[rounded_ts]['call_ask_vol'] += vol
elif sentiment == "bearish":
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
delta_data[rounded_ts]['call_bid_vol'] += vol
elif put_call == "puts":
if sentiment == "bullish":
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
delta_data[rounded_ts]['put_ask_vol'] += vol
elif sentiment == "bearish":
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
delta_data[rounded_ts]['put_bid_vol'] += vol
except Exception as e:
print(f"Error processing item: {e}")
# Calculate cumulative values over time
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
for ts in sorted_ts:
# Update cumulative values
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
# Calculate derived metrics
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - \
(cumulative['put_ask'] - cumulative['put_bid'])
res_list.append({
'timestamp': ts,
'ticker': ticker,
'net_call_premium': cumulative['net_call_premium'],
'net_put_premium': cumulative['net_put_premium'],
'call_volume': call_volume,
'put_volume': put_volume,
'net_volume': net_volume
})
res_list.sort(key=lambda x: x['timestamp'])
price_list = asyncio.run(get_stock_chart_data(ticker))
if len(price_list) == 0:
with open(f"json/one-day-price/{ticker}.json") as file:
price_list = orjson.loads(file.read())
data = add_close_to_data(price_list, res_list)
return res_list
def get_top_sector_tickers():
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
sector_list = [
"Basic Materials",
"Communication Services",
"Consumer Cyclical",
"Consumer Defensive",
"Energy",
"Financial Services",
"Healthcare",
"Industrials",
"Real Estate",
"Technology",
"Utilities",
]
headers = {
"Accept": "application/json, text/plain",
"Authorization": api_key
}
url = "https://api.unusualwhales.com/api/screener/stocks"
res_list = {}
for sector in sector_list:
querystring = {
'order': 'net_premium',
'order_direction': 'desc',
'sectors[]': sector
}
response = requests.get(url, headers=headers, params=querystring)
data = response.json().get('data', [])
updated_data = []
for item in data[:10]:
try:
new_item = {key: safe_round(value) for key, value in item.items()}
with open(f"json/quote/{item['ticker']}.json") as file:
quote_data = orjson.loads(file.read())
new_item['name'] = quote_data['name']
new_item['price'] = round(float(quote_data['price']), 2)
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
new_item['ivRank'] = round(float(new_item['iv_rank']),2)
new_item['gexRatio'] = new_item['gex_ratio']
new_item['gexNetChange'] = new_item['gex_net_change']
new_item['netCallPremium'] = new_item['net_call_premium']
new_item['netPutPremium'] = new_item['net_put_premium']
new_item['netPremium'] = abs(new_item['netCallPremium'] - new_item['netPutPremium'])
# Filter new_item to keep only specified elements
filtered_item = {key: new_item[key] for key in keep_elements if key in new_item}
updated_data.append(filtered_item)
except Exception as e:
print(f"Error processing ticker {item.get('ticker', 'unknown')}: {e}")
# Add rank to each item
for rank, item in enumerate(updated_data, 1):
item['rank'] = rank
res_list[sector] = updated_data
return res_list
def get_top_spy_tickers():
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
headers = {
"Accept": "application/json, text/plain",
"Authorization": api_key
}
url = "https://api.unusualwhales.com/api/screener/stocks"
querystring = {"is_s_p_500":"true"}
response = requests.get(url, headers=headers, params=querystring)
data = response.json().get('data', [])
updated_data = []
for item in data[:10]:
try:
new_item = {key: safe_round(value) for key, value in item.items()}
with open(f"json/quote/{item['ticker']}.json") as file:
quote_data = orjson.loads(file.read())
new_item['name'] = quote_data['name']
new_item['price'] = round(float(quote_data['price']), 2)
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
new_item['ivRank'] = round(float(new_item['iv_rank']),2)
new_item['gexRatio'] = new_item['gex_ratio']
new_item['gexNetChange'] = new_item['gex_net_change']
new_item['netCallPremium'] = new_item['net_call_premium']
new_item['netPutPremium'] = new_item['net_put_premium']
new_item['netPremium'] = abs(new_item['netCallPremium'] - new_item['netPutPremium'])
# Filter new_item to keep only specified elements
filtered_item = {key: new_item[key] for key in keep_elements if key in new_item}
updated_data.append(filtered_item)
except Exception as e:
print(f"Error processing ticker {item.get('ticker', 'unknown')}: {e}")
# Add rank to each item
for rank, item in enumerate(updated_data, 1):
item['rank'] = rank
return updated_data
def main():
market_tide = get_market_tide()
data = {'marketTide': market_tide}
'''
sector_data = get_sector_data()
top_sector_tickers = get_top_sector_tickers()
top_spy_tickers = get_top_spy_tickers()
top_sector_tickers['SPY'] = top_spy_tickers
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
'''
if len(data) > 0:
save_json(data)
if __name__ == '__main__':
main()