update cron jobs

This commit is contained in:
MuslemRahimi 2024-12-29 16:26:41 +01:00
parent c618253767
commit 6e94223d3b
2 changed files with 119 additions and 77 deletions

View File

@ -7,6 +7,8 @@ import sqlite3
from datetime import datetime, timedelta
import pytz
from typing import List, Dict
import sqlite3
from tqdm import tqdm
def save_json(data, symbol):
@ -36,87 +38,113 @@ def get_last_7_weekdays():
def analyze_dark_pool_levels(trades: List[Dict],
size_threshold: float = 0.8,
price_grouping: float = 1.0) -> Dict:
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(trades)
# Convert premium strings to float values
df['premium'] = df['premium'].apply(lambda x: float(str(x).replace(',', '')))
# Round prices to group nearby levels
df['price_level'] = (df['price'] / price_grouping).round(2) * price_grouping
# Group by price level and sum volumes
size_by_price = df.groupby('price_level').agg({
'size': 'sum',
'premium': 'sum'
}).reset_index()
# Calculate volume threshold
min_size = size_by_price['size'].quantile(size_threshold)
# Identify significant levels
significant_levels = size_by_price[size_by_price['size'] >= min_size]
# Sort levels by volume to get strongest levels first
significant_levels = significant_levels.sort_values('size', ascending=False)
# Separate into support and resistance based on current price
current_price = df['price'].iloc[-1]
support_levels = significant_levels[
significant_levels['price_level'] < current_price
].to_dict('records')
resistance_levels = significant_levels[
significant_levels['price_level'] > current_price
].to_dict('records')
# Calculate additional metrics
metrics = {
'avgTradeSize': round(df['size'].mean(),2),
'totalPrem': round(df['premium'].sum(),2),
'avgPremTrade': round(df['premium'].mean(),2)
}
price_level = support_levels+resistance_levels
price_level = sorted(price_level, key=lambda x: float(x['price_level']))
return {
'price_level': price_level,
'metrics': metrics,
}
data = []
weekdays = get_last_7_weekdays()
for date in weekdays:
size_threshold: float = 0.8,
price_grouping: float = 1.0) -> Dict:
if not trades or not isinstance(trades, list):
return {}
try:
with open(f"json/dark-pool/historical-flow/{date}.json", "r") as file:
raw_data = orjson.loads(file.read())
data +=raw_data
except:
pass
df = pd.DataFrame(trades)
if df.empty:
return {}
symbol = "GME"
res_list = [item for item in data if item['ticker'] == symbol]
# Ensure necessary columns exist
if 'premium' not in df or 'price' not in df or 'size' not in df:
return {}
# Convert premium strings to float values
df['premium'] = df['premium'].apply(lambda x: float(str(x).replace(',', '')))
df['price_level'] = (df['price'] / price_grouping).round(1) * price_grouping
size_by_price = df.groupby('price_level').agg({
'size': 'sum',
'premium': 'sum'
}).reset_index()
min_size = size_by_price['size'].quantile(size_threshold)
significant_levels = size_by_price[size_by_price['size'] >= min_size]
significant_levels = significant_levels.sort_values('size', ascending=False)
current_price = df['price'].iloc[-1]
support_levels = significant_levels[significant_levels['price_level'] < current_price].to_dict('records')
resistance_levels = significant_levels[significant_levels['price_level'] > current_price].to_dict('records')
metrics = {
'avgTradeSize': round(df['size'].mean(), 2),
'totalPrem': round(df['premium'].sum(), 2),
'avgPremTrade': round(df['premium'].mean(), 2)
}
price_level = support_levels + resistance_levels
price_level = sorted(price_level, key=lambda x: float(x['price_level']))
return {
'price_level': price_level,
'metrics': metrics,
}
except Exception as e:
print(f"Error analyzing dark pool levels: {e}")
return {}
dark_pool_levels = analyze_dark_pool_levels(
trades=res_list,
size_threshold=0.9, # Look for levels with volume in top 20%
price_grouping=1.0 # Group prices within $1.00
)
print(dark_pool_levels['metrics'])
def run():
con = sqlite3.connect('stocks.db')
etf_con = sqlite3.connect('etf.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 1E9 AND symbol NOT LIKE '%.%'")
stocks_symbols = [row[0] for row in cursor.fetchall()]
etf_cursor = etf_con.cursor()
etf_cursor.execute("PRAGMA journal_mode = wal")
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
con.close()
etf_con.close()
total_symbols = stocks_symbols+ etf_symbols
data = []
weekdays = get_last_7_weekdays()
for date in weekdays:
try:
with open(f"json/dark-pool/historical-flow/{date}.json", "r") as file:
raw_data = orjson.loads(file.read())
data +=raw_data
except:
pass
for symbol in tqdm(total_symbols):
try:
res_list = [item for item in data if isinstance(item, dict) and item.get('ticker', None) == symbol]
dark_pool_levels = analyze_dark_pool_levels(
trades=res_list,
size_threshold=0.8, # Look for levels with volume in top 20%
price_grouping=1.0 # Group prices within $1.00
)
if dark_pool_levels.get('price_level'): # Ensure there are valid levels
top_5_elements = [
{k: v for k, v in item.items() if k not in ['ticker', 'sector', 'assetType']}
for item in sorted(res_list, key=lambda x: float(x.get('premium', 0)), reverse=True)[:5]
]
# Add rank to each item
for rank, item in enumerate(top_5_elements, 1):
item['rank'] = rank
data_to_save = {
'hottestTrades': top_5_elements,
'priceLevel': dark_pool_levels['price_level'],
'metrics': dark_pool_levels['metrics']
}
save_json(data_to_save, symbol)
except Exception as e:
print(f"Error processing {symbol}: {e}")
top_5_elements = [{k: v for k, v in item.items() if k not in ['ticker', 'sector', 'assetType']} for item in sorted(res_list, key=lambda x: float(x['premium']), reverse=True)[:5]]
# Add rank to each item
for rank, item in enumerate(top_5_elements, 1):
item['rank'] = rank
data = {'hottestTrades': top_5_elements, 'priceLevel': dark_pool_levels['price_level'], 'metrics': dark_pool_levels['metrics']}
if len(data) > 0:
save_json(data, symbol)
#print(data)
if __name__ == "__main__":
run()

View File

@ -65,6 +65,19 @@ def run_dark_pool_flow():
if week <= 4 and 8 <= hour < 20:
run_command(["python3", "cron_dark_pool_flow.py"])
def run_dark_pool_level():
now = datetime.now(ny_tz)
week = now.weekday()
hour = now.hour
if week <= 4 and 8 <= hour < 20:
run_command(["python3", "cron_dark_pool_level.py"])
def run_dark_pool_ticker():
now = datetime.now(ny_tz)
week = now.weekday()
if week <= 5:
run_command(["python3", "cron_dark_pool_ticker.py"])
def run_fda_calendar():
now = datetime.now(ny_tz)
week = now.weekday()
@ -329,10 +342,10 @@ schedule.every().day.at("05:00").do(run_threaded, run_options_gex).tag('options_
schedule.every().day.at("05:00").do(run_threaded, run_export_price).tag('export_price_job')
schedule.every().day.at("06:00").do(run_threaded, run_historical_price).tag('historical_job')
schedule.every().day.at("06:30").do(run_threaded, run_ai_score).tag('ai_score_job')
schedule.every().day.at("07:00").do(run_threaded, run_ta_rating).tag('ta_rating_job')
schedule.every().day.at("08:00").do(run_threaded, run_dark_pool_ticker).tag('dark_pool_ticker_job')
schedule.every().day.at("09:00").do(run_threaded, run_hedge_fund).tag('hedge_fund_job')
schedule.every().day.at("07:30").do(run_threaded, run_financial_statements).tag('financial_statements_job')
schedule.every().day.at("08:00").do(run_threaded, run_economy_indicator).tag('economy_indicator_job')
@ -384,6 +397,7 @@ schedule.every(3).hours.do(run_threaded, run_press_releases).tag('press_release_
schedule.every(1).hours.do(run_threaded, run_fda_calendar).tag('fda_calendar_job')
schedule.every(5).minutes.do(run_threaded, run_dark_pool_level).tag('dark_pool_level_job')
schedule.every(10).seconds.do(run_threaded, run_dark_pool_flow).tag('dark_pool_flow_job')
schedule.every(2).minutes.do(run_threaded, run_dashboard).tag('dashboard_job')