update cron jobs
This commit is contained in:
parent
c618253767
commit
6e94223d3b
@ -7,6 +7,8 @@ import sqlite3
|
||||
from datetime import datetime, timedelta
|
||||
import pytz
|
||||
from typing import List, Dict
|
||||
import sqlite3
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def save_json(data, symbol):
|
||||
@ -36,87 +38,113 @@ def get_last_7_weekdays():
|
||||
|
||||
|
||||
def analyze_dark_pool_levels(trades: List[Dict],
|
||||
size_threshold: float = 0.8,
|
||||
price_grouping: float = 1.0) -> Dict:
|
||||
# Convert to DataFrame for easier manipulation
|
||||
df = pd.DataFrame(trades)
|
||||
|
||||
# Convert premium strings to float values
|
||||
df['premium'] = df['premium'].apply(lambda x: float(str(x).replace(',', '')))
|
||||
|
||||
# Round prices to group nearby levels
|
||||
df['price_level'] = (df['price'] / price_grouping).round(2) * price_grouping
|
||||
|
||||
# Group by price level and sum volumes
|
||||
size_by_price = df.groupby('price_level').agg({
|
||||
'size': 'sum',
|
||||
'premium': 'sum'
|
||||
}).reset_index()
|
||||
|
||||
# Calculate volume threshold
|
||||
min_size = size_by_price['size'].quantile(size_threshold)
|
||||
|
||||
# Identify significant levels
|
||||
significant_levels = size_by_price[size_by_price['size'] >= min_size]
|
||||
|
||||
# Sort levels by volume to get strongest levels first
|
||||
significant_levels = significant_levels.sort_values('size', ascending=False)
|
||||
|
||||
# Separate into support and resistance based on current price
|
||||
current_price = df['price'].iloc[-1]
|
||||
|
||||
support_levels = significant_levels[
|
||||
significant_levels['price_level'] < current_price
|
||||
].to_dict('records')
|
||||
|
||||
resistance_levels = significant_levels[
|
||||
significant_levels['price_level'] > current_price
|
||||
].to_dict('records')
|
||||
|
||||
# Calculate additional metrics
|
||||
metrics = {
|
||||
'avgTradeSize': round(df['size'].mean(),2),
|
||||
'totalPrem': round(df['premium'].sum(),2),
|
||||
'avgPremTrade': round(df['premium'].mean(),2)
|
||||
}
|
||||
|
||||
price_level = support_levels+resistance_levels
|
||||
price_level = sorted(price_level, key=lambda x: float(x['price_level']))
|
||||
return {
|
||||
'price_level': price_level,
|
||||
'metrics': metrics,
|
||||
}
|
||||
|
||||
data = []
|
||||
weekdays = get_last_7_weekdays()
|
||||
for date in weekdays:
|
||||
size_threshold: float = 0.8,
|
||||
price_grouping: float = 1.0) -> Dict:
|
||||
if not trades or not isinstance(trades, list):
|
||||
return {}
|
||||
try:
|
||||
with open(f"json/dark-pool/historical-flow/{date}.json", "r") as file:
|
||||
raw_data = orjson.loads(file.read())
|
||||
data +=raw_data
|
||||
except:
|
||||
pass
|
||||
df = pd.DataFrame(trades)
|
||||
if df.empty:
|
||||
return {}
|
||||
|
||||
symbol = "GME"
|
||||
res_list = [item for item in data if item['ticker'] == symbol]
|
||||
# Ensure necessary columns exist
|
||||
if 'premium' not in df or 'price' not in df or 'size' not in df:
|
||||
return {}
|
||||
|
||||
# Convert premium strings to float values
|
||||
df['premium'] = df['premium'].apply(lambda x: float(str(x).replace(',', '')))
|
||||
df['price_level'] = (df['price'] / price_grouping).round(1) * price_grouping
|
||||
|
||||
size_by_price = df.groupby('price_level').agg({
|
||||
'size': 'sum',
|
||||
'premium': 'sum'
|
||||
}).reset_index()
|
||||
|
||||
min_size = size_by_price['size'].quantile(size_threshold)
|
||||
significant_levels = size_by_price[size_by_price['size'] >= min_size]
|
||||
significant_levels = significant_levels.sort_values('size', ascending=False)
|
||||
|
||||
current_price = df['price'].iloc[-1]
|
||||
support_levels = significant_levels[significant_levels['price_level'] < current_price].to_dict('records')
|
||||
resistance_levels = significant_levels[significant_levels['price_level'] > current_price].to_dict('records')
|
||||
|
||||
metrics = {
|
||||
'avgTradeSize': round(df['size'].mean(), 2),
|
||||
'totalPrem': round(df['premium'].sum(), 2),
|
||||
'avgPremTrade': round(df['premium'].mean(), 2)
|
||||
}
|
||||
|
||||
price_level = support_levels + resistance_levels
|
||||
price_level = sorted(price_level, key=lambda x: float(x['price_level']))
|
||||
|
||||
return {
|
||||
'price_level': price_level,
|
||||
'metrics': metrics,
|
||||
}
|
||||
except Exception as e:
|
||||
print(f"Error analyzing dark pool levels: {e}")
|
||||
return {}
|
||||
|
||||
|
||||
dark_pool_levels = analyze_dark_pool_levels(
|
||||
trades=res_list,
|
||||
size_threshold=0.9, # Look for levels with volume in top 20%
|
||||
price_grouping=1.0 # Group prices within $1.00
|
||||
)
|
||||
|
||||
print(dark_pool_levels['metrics'])
|
||||
def run():
|
||||
con = sqlite3.connect('stocks.db')
|
||||
etf_con = sqlite3.connect('etf.db')
|
||||
|
||||
cursor = con.cursor()
|
||||
cursor.execute("PRAGMA journal_mode = wal")
|
||||
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 1E9 AND symbol NOT LIKE '%.%'")
|
||||
stocks_symbols = [row[0] for row in cursor.fetchall()]
|
||||
|
||||
etf_cursor = etf_con.cursor()
|
||||
etf_cursor.execute("PRAGMA journal_mode = wal")
|
||||
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
|
||||
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
|
||||
|
||||
con.close()
|
||||
etf_con.close()
|
||||
|
||||
total_symbols = stocks_symbols+ etf_symbols
|
||||
data = []
|
||||
weekdays = get_last_7_weekdays()
|
||||
for date in weekdays:
|
||||
try:
|
||||
with open(f"json/dark-pool/historical-flow/{date}.json", "r") as file:
|
||||
raw_data = orjson.loads(file.read())
|
||||
data +=raw_data
|
||||
except:
|
||||
pass
|
||||
|
||||
for symbol in tqdm(total_symbols):
|
||||
try:
|
||||
res_list = [item for item in data if isinstance(item, dict) and item.get('ticker', None) == symbol]
|
||||
dark_pool_levels = analyze_dark_pool_levels(
|
||||
trades=res_list,
|
||||
size_threshold=0.8, # Look for levels with volume in top 20%
|
||||
price_grouping=1.0 # Group prices within $1.00
|
||||
)
|
||||
|
||||
if dark_pool_levels.get('price_level'): # Ensure there are valid levels
|
||||
top_5_elements = [
|
||||
{k: v for k, v in item.items() if k not in ['ticker', 'sector', 'assetType']}
|
||||
for item in sorted(res_list, key=lambda x: float(x.get('premium', 0)), reverse=True)[:5]
|
||||
]
|
||||
|
||||
# Add rank to each item
|
||||
for rank, item in enumerate(top_5_elements, 1):
|
||||
item['rank'] = rank
|
||||
|
||||
data_to_save = {
|
||||
'hottestTrades': top_5_elements,
|
||||
'priceLevel': dark_pool_levels['price_level'],
|
||||
'metrics': dark_pool_levels['metrics']
|
||||
}
|
||||
|
||||
save_json(data_to_save, symbol)
|
||||
except Exception as e:
|
||||
print(f"Error processing {symbol}: {e}")
|
||||
|
||||
|
||||
top_5_elements = [{k: v for k, v in item.items() if k not in ['ticker', 'sector', 'assetType']} for item in sorted(res_list, key=lambda x: float(x['premium']), reverse=True)[:5]]
|
||||
# Add rank to each item
|
||||
for rank, item in enumerate(top_5_elements, 1):
|
||||
item['rank'] = rank
|
||||
|
||||
data = {'hottestTrades': top_5_elements, 'priceLevel': dark_pool_levels['price_level'], 'metrics': dark_pool_levels['metrics']}
|
||||
|
||||
if len(data) > 0:
|
||||
save_json(data, symbol)
|
||||
#print(data)
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
@ -65,6 +65,19 @@ def run_dark_pool_flow():
|
||||
if week <= 4 and 8 <= hour < 20:
|
||||
run_command(["python3", "cron_dark_pool_flow.py"])
|
||||
|
||||
def run_dark_pool_level():
|
||||
now = datetime.now(ny_tz)
|
||||
week = now.weekday()
|
||||
hour = now.hour
|
||||
if week <= 4 and 8 <= hour < 20:
|
||||
run_command(["python3", "cron_dark_pool_level.py"])
|
||||
|
||||
def run_dark_pool_ticker():
|
||||
now = datetime.now(ny_tz)
|
||||
week = now.weekday()
|
||||
if week <= 5:
|
||||
run_command(["python3", "cron_dark_pool_ticker.py"])
|
||||
|
||||
def run_fda_calendar():
|
||||
now = datetime.now(ny_tz)
|
||||
week = now.weekday()
|
||||
@ -329,10 +342,10 @@ schedule.every().day.at("05:00").do(run_threaded, run_options_gex).tag('options_
|
||||
schedule.every().day.at("05:00").do(run_threaded, run_export_price).tag('export_price_job')
|
||||
|
||||
schedule.every().day.at("06:00").do(run_threaded, run_historical_price).tag('historical_job')
|
||||
|
||||
schedule.every().day.at("06:30").do(run_threaded, run_ai_score).tag('ai_score_job')
|
||||
|
||||
schedule.every().day.at("07:00").do(run_threaded, run_ta_rating).tag('ta_rating_job')
|
||||
schedule.every().day.at("08:00").do(run_threaded, run_dark_pool_ticker).tag('dark_pool_ticker_job')
|
||||
schedule.every().day.at("09:00").do(run_threaded, run_hedge_fund).tag('hedge_fund_job')
|
||||
schedule.every().day.at("07:30").do(run_threaded, run_financial_statements).tag('financial_statements_job')
|
||||
schedule.every().day.at("08:00").do(run_threaded, run_economy_indicator).tag('economy_indicator_job')
|
||||
@ -384,6 +397,7 @@ schedule.every(3).hours.do(run_threaded, run_press_releases).tag('press_release_
|
||||
|
||||
schedule.every(1).hours.do(run_threaded, run_fda_calendar).tag('fda_calendar_job')
|
||||
|
||||
schedule.every(5).minutes.do(run_threaded, run_dark_pool_level).tag('dark_pool_level_job')
|
||||
schedule.every(10).seconds.do(run_threaded, run_dark_pool_flow).tag('dark_pool_flow_job')
|
||||
|
||||
schedule.every(2).minutes.do(run_threaded, run_dashboard).tag('dashboard_job')
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user