update cron job
This commit is contained in:
parent
4e58058631
commit
7669f2ac4b
@ -4,9 +4,11 @@ import numpy as np
|
||||
import ujson
|
||||
import asyncio
|
||||
import sqlite3
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
|
||||
async def save_json(symbol, data):
|
||||
os.makedirs("json/var", exist_ok=True) # Ensure directory exists
|
||||
with open(f"json/var/{symbol}.json", 'w') as file:
|
||||
ujson.dump(data, file)
|
||||
|
||||
@ -39,10 +41,10 @@ def compute_var(df):
|
||||
df = df.dropna()
|
||||
# Calculate VaR at 95% confidence level
|
||||
confidence_level = 0.95
|
||||
var = abs(np.percentile(df['Returns'], 100 * (1 - confidence_level)))
|
||||
var_N_days = round(var * np.sqrt(5)*100,2) # N days
|
||||
var = np.percentile(df['Returns'], 100 * (1 - confidence_level))
|
||||
var_N_days = round(var * np.sqrt(len(df)) * 100, 2) # N days: the length of df represents the N days
|
||||
|
||||
return -var_N_days #{'rating': risk_rating, 'var': -var_N_days, 'outlook': outlook}
|
||||
return var_N_days # Positive value represents a loss
|
||||
|
||||
async def run():
|
||||
start_date = "2015-01-01"
|
||||
@ -70,36 +72,39 @@ async def run():
|
||||
total_symbols = stocks_symbols + etf_symbols + crypto_symbols
|
||||
|
||||
for symbol in tqdm(total_symbols):
|
||||
if symbol in etf_symbols:
|
||||
query_con = etf_con
|
||||
elif symbol in crypto_symbols:
|
||||
query_con = crypto_con
|
||||
elif symbol in stocks_symbols:
|
||||
query_con = con
|
||||
|
||||
query_template = """
|
||||
SELECT
|
||||
date, open, high, low, close, volume
|
||||
FROM
|
||||
"{symbol}"
|
||||
WHERE
|
||||
date BETWEEN ? AND ?
|
||||
"""
|
||||
query = query_template.format(symbol=symbol)
|
||||
df = pd.read_sql_query(query, query_con, params=(start_date, end_date))
|
||||
|
||||
# Convert date to datetime
|
||||
df['date'] = pd.to_datetime(df['date'])
|
||||
|
||||
# Group by year and month
|
||||
monthly_groups = df.groupby(df['date'].dt.to_period('M'))
|
||||
|
||||
history = []
|
||||
try:
|
||||
if symbol in etf_symbols:
|
||||
query_con = etf_con
|
||||
elif symbol in crypto_symbols:
|
||||
query_con = crypto_con
|
||||
elif symbol in stocks_symbols:
|
||||
query_con = con
|
||||
else:
|
||||
continue
|
||||
|
||||
query_template = """
|
||||
SELECT
|
||||
date, open, high, low, close, volume
|
||||
FROM
|
||||
"{symbol}"
|
||||
WHERE
|
||||
date BETWEEN ? AND ?
|
||||
"""
|
||||
query = query_template.format(symbol=symbol)
|
||||
df = pd.read_sql_query(query, query_con, params=(start_date, end_date))
|
||||
|
||||
# Convert date to datetime
|
||||
df['date'] = pd.to_datetime(df['date'])
|
||||
|
||||
# Group by year and month
|
||||
monthly_groups = df.groupby(df['date'].dt.to_period('M'))
|
||||
history = []
|
||||
|
||||
for period, group in monthly_groups:
|
||||
var_data = compute_var(group)
|
||||
history.append({'date': str(period), 'var': var_data})
|
||||
|
||||
if len(group) >=19: # Check if the month has at least 19 data points
|
||||
var_data = compute_var(group)
|
||||
history.append({'date': str(period), 'var': var_data})
|
||||
|
||||
risk_rating = assign_risk_rating(abs(history[-1]['var']))
|
||||
outlook = 'Neutral'
|
||||
if risk_rating < 5:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user